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SOME RESULTS ON MONOGENIC (R, S)-GROUPS

Yong Uk CHO

ABSTRACT. In this paper, we denote that R is a near-ring and G an R-group. We
initiate the study of the substructures of R and G. Next, we investigate some
properties of R-groups, d.g. near-rings and monogenic (R, S)-groups.

1. INTRODUCTION

A near-ring R is an algebraic system (R, +, ) with two binary operations + and
- such that (R, +) is a group (not necessarily abelian) with neutral element 0, (R, -)
is a semigroup and a(b+ ¢) = ab + ac for all a,b,c in R. We note that obviously,
a0 =0 and a(—b) = —ab for all a,b in R, but in general, Oa # 0 and (—a)b # —ab.

If R has a unity 1, then R is called unitary. An element d in R is called
distributive if (a + b)d = ad + bd for all a and b in R.

For example, if R is a near-ring with unity 1, then 0 and 1 are clearly distributive
elements.

We consider the following substructures of near-rings: Given a near-ring R, Ry =

{a € R | 0a = 0} which is called the zero symmetric part of R,
R.={a€R|0a=a}={a€R|ra=a, forallr € R} ={0a€ R|ac R}

which is called the constant part of R, and Ry = {a € R | a is distributive} which
is called the distributive part of R.

A non-empty subset S of a near-ring R is said to be a subnear-ring of R, if S
is a near-ring under the operations of R, equivalently, for all a,b in S, a —b € S
and ab € S. This is called a criterion of subnear-rings. Sometimes, we denote it by
S <R.
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We note that Ry and R, are subnear-rings of R, on the other hand, Ry is a
multiplicative semigroup of R (see following Lemma 2.2), but not a subnear-ring of
R. A near-ring R with the extra axiom Oa = 0 for all @ € R, that is, R = Ry is said
to be zero symmetric, also, in case R = R., R is called a constant near-ring, and in
case R = Ry, R is called a distributive near-ring.

Let (G,+) be a group (not necessarily abelian). We may obtain some useful

examples of near-rings as following, there are three kinds of trivial near-rings:
Example 1.1. Let G be an additive group.
(1) If we define a multiplication on G by zy = 0 for all ,y in G, then (G, +,)

becomes a near-ring, which is called the trivial near-ring on G.

(2) If we define a multiplication on G by xy =y for all z,y in G, then (G, +, )
becomes a near-ring, because (zy)z = z = z(yz) and z(y +2) = y+ 2z =
xy + xz, for all z,y,z in G, but in general, 0x = 0 and (x + y)z = zz + y=z
are not true. This kind of near-ring is constant near-ring, which is called
the trivial constant near-ring on G.

(3) If we define a multiplication on G by xy = 0 if z = 0, = y otherwise in G,
then (G, +, -) becomes a zero symmetric near-ring, which is called the trivial

zero symmetric near-ring on G.

Next is in [6], in the set
M@G)={f|f:G—G}

of all the self maps of G, if we define the sum f + g of any two mappings f,g in
M(G) by the rule z(f +g) = zf + xg for all z € G and the product f - g by the rule
z(f-g) = (zf)g for all z € G, then (M(G),+,-) becomes a near-ring. It is called
the self map near-ring on G.

Also, we can define the substructures of (M (G), +, -) as following: My(G) = {f €
M(G)|0f =0} and M.(G) ={f € M(G) | f is constant}. Then (My(G),+,-) is a
zero symmetric near-ring. Moreover, My(G) = M(G)o and M.(G) = M(G)..

The ideas in Example 1.1 inspire the following notation which we will use.
Example 1.2. Let G be an additive group.

(1) If z € G, then we define oy € M(G) by gay = x for all g € G.
(2) If x € G, then we define 8, € My(G) by o8, = o and g8, = = for all
g€ G—{o}.
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Note that a, € My(G), but a is not in My(G) for x # o. The following result
ties this in with Example 1.1.

Let R and S be two near-rings. Then a mapping 6 from R to S is called a near-
ring homomorphism if (i) (a + b)0 = ab + bd, (i) (ab)d = abbh. Obviously, RO < S
and T~! < R for any T < S.

We can replace homomorphism by monomorphism, epimorphism, isomorphism,
endomorphism and automorphism, if these terms have their usual meanings as in
ring theory [1]. If  from R to S is a near-ring isomorphism, then we say that R is
isomorphic to S, and denoted it by R 22 S.

Proposition 1.3. Let G be an additive group, and let x € G. Then
Yo = ag,Vy € M(G).

Also, {azlr € G} < M(G) and isomorphic to the trivial constant near-ring on
G, and {Bz|r € G} < My(G) and isomorphic to the trivial zero symmetric near-ring
on G

Proof. Because of the definition of ay, for any ¢t € G,
tya, =z = tag, Vy € M(G),

we see that ya, = ay. So the first part is easily proved.

Next, since for any o, and «, in the given set, a, — oy = a;—y and o0y = oy,
from the 1st part. Hence by the criterion of subnear-ring, {a,|z € G} < M(G).
Similarly, we can prove that {5,|z € G} < My(G).

Finally, the two maps which are given by a, — x, 8., — x, are clearly isomor-

phisms. O

We can check that {a;|r € G} is the unique maximal constant subnear-ring of
M(G), so we see that {az|z € G} = M (G).
Let R be any near-ring and G an additive group. Then G is called an R-group if

there exists a near-ring homomorphism
0 : (Ra -+, ) - (M(G)> =+, )

Such a homomorphism 6 is called a representation of R on G. We denote it by Gg.

We may write that zr (as a scalar product in G) for z(rf) for all z € G and
r € R. If R is unitary, then R-group G is called unitary. Thus an R-group is an
additive group G satisfying (i) z(a+b) = za+xb, (ii) x(ab) = (za)b and (iii) 1 = =
(if R has a unity 1), for all x € G and a, b € R.
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Naturally, we can define a new concept of R-group: An R-group G is called
distributive, in case (x + y)a = xa + ya, for all z,y € G and for each a € R. For
example, every distributive near-ring R is a distributive R-group.

Evidently, every near-ring R can be given the structure of an R-group (unitary,
if R is unitary) by right multiplication in R. Moreover, every group G has a natural
M (G)-group structure, from the representation of M(G) on G by applying the f €
M(G) to the x € G as a scalar multiplication x f.

Let R be a near-ring, and let G and H be two R-groups. Then a mapping 8 from
G to H is called an R-group homomorphism, or R-homomorphism if

(i) (z+y)fd=20+y0, (i) (xa)d = (z0)a.

We can replace R-homomorphism by R-monomorphism, R-epimorphism, R-iso-
morphism, R-endomorphism and R-automorphism, if these terms have their usual
meanings as in module theory [1]. If  from G to H is an isomorphism, then we say
that G is R-isomorphic to H, and denoted it by G = H.

Let R be a near-ring and let G be an R-group. If there exists x in G such that
G = zR, that is, G = {zr | r € R}, then G is called a monogenic R-group and the
element z is called a generator of G.

For the remainder concepts and results on near-rings, we refer to G. Pilz [6].
2. SOME PROPERTIES OF (R, S)-GROUPS

Distributive near-rings, which are near-rings satisfying both distributive laws, are
very close to rings. In the mean time, we consider a larger class of near-rings which
has a lot of distributivity built in.

In the period 1958-1962, A. Frohlich published some papers on distributively
generated near-rings [3], [4], [5]. These mark the real beginning of these subjects.

A near-ring R is called a distributively generated near-ring, denoted by d.g. near-
ring, if (R, +) is generated as a group by a semigroup (.S, -) of distributive elements.

A d.g. near-ring R which is generated by a semigroup S is denoted by (R, S).

Rings are special cases of d.g. near-rings, because of all elements of a ring are

distributive.
Example 2.1. Let G be an additive group.
(1) The trivial near-ring on a group G has all its elements distributive.

(2) Consider the set EndG = {a|a is an endomorphism of G}. Then EndG C
My(G), and EndG consists of distributive elements of My(G).
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Lemma 2.2. Let R be an near-ring. The set Ry of all distributive elements of R

forms a multiplicative semigroup.
Proof. Let x, y € R and a, b € Ry. Then
(x +y)ab = (za + ya)b = (za)b + (ya)b = x(ab) + y(ab).
O
The proof of the following result is very similar to that of ring theorestic result.

Lemma 2.3. Let R be a near-ring (not necessarily zero symmetric), and let x € Ry.
Then

0x =0, (—y)r =—yz Yy € R.
Proposition 2.4. Let G be an additive group. Then
M()(G)d = EndG.

Proof. We see that EndG C My(G)q is immediate from the definition of near-
ring homomorphism. So consider that f € My(G)4. Since f is distributive, using
Example 1.2, for any z, y € G,

(ﬁz + ﬁy)f = ﬁmf + ﬁyf
On the other hand, applying this equation to any non-zero element ¢ in G yields the

equation
(@+y)f ==f+yf, Vo, ye G,
that is f € EndG. Hence My(G)q C EndG. O

Proposition 2.5. Let R be a near-ring and S a semigroup of distributive elements of
R. Then the d.g. near-ring generated by S is precisely the d.g. near-ring generated,

as a near-ring, by S.

Proof. Let (T,S) be the d.g. near-ring generated by S. It suffices to show that 7T is
closed under products. Thus let €181 + - - -+ €,8,, and Nty + - - + Pty in T, where
¢ ==x1, n; ==£1, s;,t; € SVi,j, 1 <i<n,1<j<m. Then

(6131 +--- 4+ 6nsn)(nltl + -+ nmtm) =
(€181 + -+ €ensp)mts + - -+ (€151 + - -+ €50)Mntm =

mersits + -+ enspt1) + -+ Nm(ersitm + - - - + €nSntm).

Since s;t; € S Vi,j, 1 <i <mn,1 < j <m, this proves our result. O
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Example 2.6. Let G be an additive group and let S C EndG a semigroup of
endomorphisms of G. Then S is a semigroup of distributive elements of the near-
ring My(G). In this case, near-ring R generated by S is a d.g. near-ring (R, S).
There are three kinds of d.g. near-rings which arise in this way.
(1) S = EndG, we denote the d.g. near-ring by (FE(G), EndG)
(2) S = AutG, the group of all automorphisms of G, we denote the d.g. near-
ring by (A(G), AutG)
(3) S = InnG, the group of all inner automorphisms of G, we denote the d.g.
near-ring by (I(G), InnG).
Note that I(G) C A(G) C E(G), and E(G) = EndG, in case G is abelian.

Let G be an R-group and K a nonempty subset of G. Define Ann(K) = {a €
R|Ka = 0} which is called the annihilator of K in R. We say that G is a faithful
R-group if Ann(G) = {0}.

Let (R, S) be the d.g. near-ring generated by S and let G be an R-group. Let 6
be the representation which defines G as an R-group. We call G an (R, S)-group if

S0 C EndG.

Also, let (R,S) be the d.g. near-ring. A representation 6 of R is called a d.g.
representation if 8 : R — M(G) satisfies S8 C EndG, where G is an R-group
associated with the representation 6.

Note that a d.g. representation is a representation associated with an (R, S)-
group. In other words, G is an (R, S)-group if the elements of S induces endomor-

phisms on G. Examples 2.6 gives us some (R, S)-groups.
Some more examples of (R, S)-groups arise as following.
Lemma 2.7. Let (R,S) be a d.g. near-ring generated by S. Then all R-subgroups
and R-homomorphic images of an (R, S)-group are (R, S)-groups.
Proof. These can be verified very easily from the definition of (R, S)-group. g

Proposition 2.8. Let R be a near-ring and G an R-group. Then we have the
following statements:
(1) Ann(QG) is a two-sided ideal of R. Moreover G is a faithful R/Ann(G)-group.
(2) For any x € G, we get xR = R/Ann(x) as R-groups.

Proof. (1) Obviously, Ann(G) is a two-sided ideal of R. We now make G an
R/Ann(G)-group by defining, for x € G,r + Ann(G) € R/Ann(G), the action
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z(r + Ann(G)) = xzr. if r + Ann(G) = r' + Ann(QG), then —r' +r € Ann(G) hence
xz(—r"4+r) =0 for all z in G, that is to say, xr = zr’. This implies that

z(r + Ann(G)) = zr = or' = z(r' + Ann(G));

thus the action of R/Ann(G) on G is well defined. The verification of the structure
of an R/Ann(G)-group is a routine fact.

Finally, to see that G is a faithful R/Ann(G)-group, we note that if z(r +
Ann(G)) = 0 for all x € G, then by the definition of R/Ann(G)-group structure, we
have zr = 0. Hence r € Ann(G). This says that only the zero element of R/Ann(G)
annihilates all of G. Thus G is a faithful R/Ann(G)-group.

(2) For any =z € G, clearly xR is an R-subgroup of G. The map ¢, : R — xR
defined by r¢, = xr is an R-epimorphism, so that from the isomorphism theorem

in near-ring theory and the kernel of ¢, is Ann(x), we can induce that

xR = R/Ann(x)
as R-groups. O
Proposition 2.9. If (R, S) is a d.g. near-ring generated by S, then every monogenic
R-group is an (R, S)-group.

Proof. Let G be a monogenic R-group with x as a generator. Then G = xR and
the map ¢, : Rr — GR defined by a¢, = za is an R-epimorphism from R to G as
R-groups. We see that by the Proposition 2.8,

G = R/Ann(x),
where Ann(x) = Kerg,. From the Lemma 2.7, we see that G is an (R, S)-group. 0O

Corollary 2.10. Let G be a monogenic R-group with x as a generator. Then we

have the following isomorphic relation.

G = R/Ann(x).
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