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SOME RESULTS ON MONOGENIC (R,S)-GROUPS

Yong Uk Cho

Abstract. In this paper, we denote that R is a near-ring and G an R-group. We
initiate the study of the substructures of R and G. Next, we investigate some
properties of R-groups, d.g. near-rings and monogenic (R, S)-groups.

1. Introduction

A near-ring R is an algebraic system (R, +, ·) with two binary operations + and
· such that (R, +) is a group (not necessarily abelian) with neutral element 0, (R, ·)
is a semigroup and a(b + c) = ab + ac for all a, b, c in R. We note that obviously,
a0 = 0 and a(−b) = −ab for all a, b in R, but in general, 0a 6= 0 and (−a)b 6= −ab.

If R has a unity 1, then R is called unitary. An element d in R is called
distributive if (a + b)d = ad + bd for all a and b in R.

For example, if R is a near-ring with unity 1, then 0 and 1 are clearly distributive
elements.

We consider the following substructures of near-rings: Given a near-ring R, R0 =
{a ∈ R | 0a = 0} which is called the zero symmetric part of R,

Rc = {a ∈ R | 0a = a} = {a ∈ R | ra = a, for all r ∈ R} = {0a ∈ R | a ∈ R}
which is called the constant part of R, and Rd = {a ∈ R | a is distributive} which
is called the distributive part of R.

A non-empty subset S of a near-ring R is said to be a subnear-ring of R, if S

is a near-ring under the operations of R, equivalently, for all a, b in S, a − b ∈ S

and ab ∈ S. This is called a criterion of subnear-rings. Sometimes, we denote it by
S < R.
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We note that R0 and Rc are subnear-rings of R, on the other hand, Rd is a
multiplicative semigroup of R (see following Lemma 2.2), but not a subnear-ring of
R. A near-ring R with the extra axiom 0a = 0 for all a ∈ R, that is, R = R0 is said
to be zero symmetric, also, in case R = Rc, R is called a constant near-ring, and in
case R = Rd, R is called a distributive near-ring.

Let (G,+) be a group (not necessarily abelian). We may obtain some useful
examples of near-rings as following, there are three kinds of trivial near-rings:

Example 1.1. Let G be an additive group.

(1) If we define a multiplication on G by xy = 0 for all x, y in G, then (G, +, ·)
becomes a near-ring, which is called the trivial near-ring on G.

(2) If we define a multiplication on G by xy = y for all x, y in G, then (G, +, ·)
becomes a near-ring, because (xy)z = z = x(yz) and x(y + z) = y + z =
xy + xz, for all x, y, z in G, but in general, 0x = 0 and (x + y)z = xz + yz

are not true. This kind of near-ring is constant near-ring, which is called
the trivial constant near-ring on G.

(3) If we define a multiplication on G by xy = 0 if x = 0, = y otherwise in G,
then (G,+, ·) becomes a zero symmetric near-ring, which is called the trivial
zero symmetric near-ring on G.

Next is in [6], in the set

M(G) = {f | f : G −→ G}

of all the self maps of G, if we define the sum f + g of any two mappings f, g in
M(G) by the rule x(f + g) = xf +xg for all x ∈ G and the product f · g by the rule
x(f · g) = (xf)g for all x ∈ G, then (M(G), +, ·) becomes a near-ring. It is called
the self map near-ring on G.

Also, we can define the substructures of (M(G),+, ·) as following: M0(G) = {f ∈
M(G) | 0f = 0} and Mc(G) = {f ∈ M(G) | f is constant}. Then (M0(G),+, ·) is a
zero symmetric near-ring. Moreover, M0(G) = M(G)0 and Mc(G) = M(G)c.

The ideas in Example 1.1 inspire the following notation which we will use.

Example 1.2. Let G be an additive group.

(1) If x ∈ G, then we define αx ∈ M(G) by gαx = x for all g ∈ G.
(2) If x ∈ G, then we define βx ∈ M0(G) by oβx = o and gβx = x for all

g ∈ G− {o}.
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Note that αo ∈ M0(G), but αx is not in M0(G) for x 6= o. The following result
ties this in with Example 1.1.

Let R and S be two near-rings. Then a mapping θ from R to S is called a near-
ring homomorphism if (i) (a + b)θ = aθ + bθ, (ii) (ab)θ = aθbθ. Obviously, Rθ < S

and Tθ−1 < R for any T < S.
We can replace homomorphism by monomorphism, epimorphism, isomorphism,

endomorphism and automorphism, if these terms have their usual meanings as in
ring theory [1]. If θ from R to S is a near-ring isomorphism, then we say that R is
isomorphic to S, and denoted it by R ∼= S.

Proposition 1.3. Let G be an additive group, and let x ∈ G. Then

γαx = αx, ∀γ ∈ M(G).

Also, {αx|x ∈ G} < M(G) and isomorphic to the trivial constant near-ring on
G, and {βx|x ∈ G} < M0(G) and isomorphic to the trivial zero symmetric near-ring
on G

Proof. Because of the definition of αx, for any t ∈ G,

tγαx = x = tαx,∀γ ∈ M(G),

we see that γαx = αx. So the first part is easily proved.
Next, since for any αx and αy in the given set, αx − αy = αx−y and αxαy = αy,

from the 1st part. Hence by the criterion of subnear-ring, {αx|x ∈ G} < M(G).
Similarly, we can prove that {βx|x ∈ G} < M0(G).

Finally, the two maps which are given by αx → x, βx,→ x, are clearly isomor-
phisms. ¤

We can check that {αx|x ∈ G} is the unique maximal constant subnear-ring of
M(G), so we see that {αx|x ∈ G} = Mc(G).

Let R be any near-ring and G an additive group. Then G is called an R-group if
there exists a near-ring homomorphism

θ : (R, +, ·) −→ (M(G), +, ·).
Such a homomorphism θ is called a representation of R on G. We denote it by GR.

We may write that xr (as a scalar product in G) for x(rθ) for all x ∈ G and
r ∈ R. If R is unitary, then R-group G is called unitary. Thus an R-group is an
additive group G satisfying (i) x(a+b) = xa+xb, (ii) x(ab) = (xa)b and (iii) x1 = x

( if R has a unity 1 ), for all x ∈ G and a, b ∈ R.
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Naturally, we can define a new concept of R-group: An R-group G is called
distributive, in case (x + y)a = xa + ya, for all x, y ∈ G and for each a ∈ R. For
example, every distributive near-ring R is a distributive R-group.

Evidently, every near-ring R can be given the structure of an R-group (unitary,
if R is unitary) by right multiplication in R. Moreover, every group G has a natural
M(G)-group structure, from the representation of M(G) on G by applying the f ∈
M(G) to the x ∈ G as a scalar multiplication xf .

Let R be a near-ring, and let G and H be two R-groups. Then a mapping θ from
G to H is called an R-group homomorphism, or R-homomorphism if

(i) (x + y)θ = xθ + yθ, (ii) (xa)θ = (xθ)a.

We can replace R-homomorphism by R-monomorphism, R-epimorphism, R-iso-
morphism, R-endomorphism and R-automorphism, if these terms have their usual
meanings as in module theory [1]. If θ from G to H is an isomorphism, then we say
that G is R-isomorphic to H, and denoted it by G ∼=R H.

Let R be a near-ring and let G be an R-group. If there exists x in G such that
G = xR, that is, G = {xr | r ∈ R}, then G is called a monogenic R-group and the
element x is called a generator of G.

For the remainder concepts and results on near-rings, we refer to G. Pilz [6].

2. Some Properties of (R,S)-groups

Distributive near-rings, which are near-rings satisfying both distributive laws, are
very close to rings. In the mean time, we consider a larger class of near-rings which
has a lot of distributivity built in.

In the period 1958-1962, A. Frohlich published some papers on distributively
generated near-rings [3], [4], [5]. These mark the real beginning of these subjects.

A near-ring R is called a distributively generated near-ring, denoted by d.g. near-
ring, if (R, +) is generated as a group by a semigroup (S, ·) of distributive elements.

A d.g. near-ring R which is generated by a semigroup S is denoted by (R, S).
Rings are special cases of d.g. near-rings, because of all elements of a ring are

distributive.

Example 2.1. Let G be an additive group.

(1) The trivial near-ring on a group G has all its elements distributive.
(2) Consider the set EndG = {α|α is an endomorphism of G}. Then EndG ⊆

M0(G), and EndG consists of distributive elements of M0(G).
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Lemma 2.2. Let R be an near-ring. The set Rd of all distributive elements of R

forms a multiplicative semigroup.

Proof. Let x, y ∈ R and a, b ∈ Rd. Then

(x + y)ab = (xa + ya)b = (xa)b + (ya)b = x(ab) + y(ab).

¤
The proof of the following result is very similar to that of ring theorestic result.

Lemma 2.3. Let R be a near-ring (not necessarily zero symmetric), and let x ∈ Rd.
Then

0x = 0, (−y)x = −yx ∀y ∈ R.

Proposition 2.4. Let G be an additive group. Then

M0(G)d = EndG.

Proof. We see that EndG ⊆ M0(G)d is immediate from the definition of near-
ring homomorphism. So consider that f ∈ M0(G)d. Since f is distributive, using
Example 1.2, for any x, y ∈ G,

(βx + βy)f = βxf + βyf.

On the other hand, applying this equation to any non-zero element t in G yields the
equation

(x + y)f = xf + yf, ∀x, y ∈ G,

that is f ∈ EndG. Hence M0(G)d ⊆ EndG. ¤

Proposition 2.5. Let R be a near-ring and S a semigroup of distributive elements of
R. Then the d.g. near-ring generated by S is precisely the d.g. near-ring generated,
as a near-ring, by S.

Proof. Let (T, S) be the d.g. near-ring generated by S. It suffices to show that T is
closed under products. Thus let ε1s1 + · · ·+ εnsn, and η1t1 + · · ·+ ηmtm in T, where
εi = ±1, ηj = ±1, si, tj ∈ S ∀i, j, 1 ≤ i ≤ n, 1 ≤ j ≤ m. Then

(ε1s1 + · · ·+ εnsn)(η1t1 + · · ·+ ηmtm) =

(ε1s1 + · · ·+ εnsn)η1t1 + · · ·+ (ε1s1 + · · ·+ εnsn)ηmtm =

η1(ε1s1t1 + · · ·+ εnsnt1) + · · ·+ ηm(ε1s1tm + · · ·+ εnsntm).

Since sitj ∈ S ∀i, j, 1 ≤ i ≤ n, 1 ≤ j ≤ m, this proves our result. ¤
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Example 2.6. Let G be an additive group and let S ⊆ EndG a semigroup of
endomorphisms of G. Then S is a semigroup of distributive elements of the near-
ring M0(G). In this case, near-ring R generated by S is a d.g. near-ring (R, S).
There are three kinds of d.g. near-rings which arise in this way.

(1) S = EndG, we denote the d.g. near-ring by (E(G), EndG)
(2) S = AutG, the group of all automorphisms of G, we denote the d.g. near-

ring by (A(G), AutG)
(3) S = InnG, the group of all inner automorphisms of G, we denote the d.g.

near-ring by (I(G), InnG).

Note that I(G) ⊆ A(G) ⊆ E(G), and E(G) = EndG, in case G is abelian.

Let G be an R-group and K a nonempty subset of G. Define Ann(K) = {a ∈
R|Ka = 0} which is called the annihilator of K in R. We say that G is a faithful
R-group if Ann(G) = {0}.

Let (R, S) be the d.g. near-ring generated by S and let G be an R-group. Let θ

be the representation which defines G as an R-group. We call G an (R,S)-group if

Sθ ⊆ EndG.

Also, let (R, S) be the d.g. near-ring. A representation θ of R is called a d.g.
representation if θ : R → M(G) satisfies Sθ ⊆ EndG, where G is an R-group
associated with the representation θ.

Note that a d.g. representation is a representation associated with an (R, S)-
group. In other words, G is an (R,S)-group if the elements of S induces endomor-
phisms on G. Examples 2.6 gives us some (R,S)-groups.

Some more examples of (R, S)-groups arise as following.

Lemma 2.7. Let (R, S) be a d.g. near-ring generated by S. Then all R-subgroups
and R-homomorphic images of an (R, S)-group are (R, S)-groups.

Proof. These can be verified very easily from the definition of (R,S)-group. ¤

Proposition 2.8. Let R be a near-ring and G an R-group. Then we have the
following statements:

(1) Ann(G) is a two-sided ideal of R. Moreover G is a faithful R/Ann(G)-group.
(2) For any x ∈ G, we get xR ∼= R/Ann(x) as R-groups.

Proof. (1) Obviously, Ann(G) is a two-sided ideal of R. We now make G an
R/Ann(G)-group by defining, for x ∈ G, r + Ann(G) ∈ R/Ann(G), the action
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x(r + Ann(G)) = xr. If r + Ann(G) = r′ + Ann(G), then −r′ + r ∈ Ann(G) hence
x(−r′ + r) = 0 for all x in G, that is to say, xr = xr′. This implies that

x(r + Ann(G)) = xr = xr′ = x(r′ + Ann(G));

thus the action of R/Ann(G) on G is well defined. The verification of the structure
of an R/Ann(G)-group is a routine fact.

Finally, to see that G is a faithful R/Ann(G)-group, we note that if x(r +
Ann(G)) = 0 for all x ∈ G, then by the definition of R/Ann(G)-group structure, we
have xr = 0. Hence r ∈ Ann(G). This says that only the zero element of R/Ann(G)
annihilates all of G. Thus G is a faithful R/Ann(G)-group.
(2) For any x ∈ G, clearly xR is an R-subgroup of G. The map φx : R → xR

defined by rφx = xr is an R-epimorphism, so that from the isomorphism theorem
in near-ring theory and the kernel of φx is Ann(x), we can induce that

xR ∼= R/Ann(x)

as R-groups. ¤

Proposition 2.9. If (R, S) is a d.g. near-ring generated by S, then every monogenic
R-group is an (R, S)-group.

Proof. Let G be a monogenic R-group with x as a generator. Then G = xR and
the map φx : RR → GR defined by aφx = xa is an R-epimorphism from R to G as
R-groups. We see that by the Proposition 2.8,

G ∼= R/Ann(x),

where Ann(x) = Kerφx. From the Lemma 2.7, we see that G is an (R, S)-group. ¤

Corollary 2.10. Let G be a monogenic R-group with x as a generator. Then we
have the following isomorphic relation.

G ∼= R/Ann(x).
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