AN APPLICATION OF COMPLICATEDNESS TO $B H$-ALGEBRAS

Eun Mi Kim ${ }^{\text {a }}$ and Sun Shin Ahn ${ }^{\text {b,* }}$

Abstract

The notions of an initial section and a special set in $B H$-algebras are defined and some of their properties are obtained. The notion of a complicated $B H$ algebra is introduced and some related properties are obtained. Finally, the notion of essences in BH -algebras are defined, and many properties are investigated.

1. Introduction

Y. Imai and K. Iséki introduced two classes of abstract algebras: BCK-algebras and $B C I$-algebras $([2,3])$. It is known that the class of $B C K$-algebras is a proper subclass of the class of $B C I$-algebras. $B C K$-algebras have some connections with other areas: D. Mundici [7] proved $M V$-algebras are categorically equivalent to bounded commutative algebra, and J. Meng [5] proved that implicative commutative semigroups are equivalent to a class of $B C K$-algebras. Y. B. Jun, E. H. Roh, and H. S. Kim [4] introduced the notion of a $B H$-algebra, which is a generalization of $B C K / B C I$-algebras. They defined the notions of ideal, maximal ideal and translation ideal and investigated some properties. E. H. Roh and S. Y. Kim [8] estimated the number of $B H^{*}$-subalgebras of order i in a transitive $B H^{*}$-algebras by using Hao's method. In [1], S. S. Ahn and J. H. Lee introduced the notion of strong ideals in BH -algebra and investigate some properties of it. They also defined the notion of a rough sets in BH -algebras. Using a strong ideal in BH -algebras, they obtained some relations between strong ideals and upper(lower) rough strong ideals in BH -algebras.

In this paper, we define the notions of an initial section and a special set and get of their properties. We also introduce the notion of complicated $B H$-algebra and

[^0]obtain some related properties. Finally, the notion of essences in BH -algebras are defined, and many properties are investigated.

2. PRELIMINARIES

By a $B H$-algebra $([4])$, we mean an algebra $(X ; *, 0)$ of type $(2,0)$ satisfying the following conditions:
(I) $x * x=0$,
(II) $x * 0=x$,
(III) $x * y=0$ and $y * x=0$ imply $x=y$, for all $x, y \in X$.

For brevity, we also call X a $B H$-algebra. In X we can define an order relation $" \leq "$ by $x \leq y$ if and only if $x * y=0$. Then \leq is reflexive and antisymmetric. A non-empty subset S of a $B H$-algebra X is called a subalgebra of X if, for any $x, y \in S, x * y \in S$, i.e., S is closed under binary operation "*".

Definition 2.1 ([4]). A non-empty subset A of a $B H$-algebra X is called an ideal of X if it satisfies:
(I1) $0 \in A$,
(I2) $x * y \in A$ and $y \in A$ imply $x \in A, \forall x, y \in X$.
An ideal A of a $B H$-algebra X is said to be a translation ideal of X if it satisfies:
(I3) $x * y \in A, y * x \in A$ imply $(x * z) *(y * z),(z * x) *(z * y) \in A$ for any $x, y, z \in X$.

Obviously, $\{0\}$ and X are translation ideals of X
Definition 2.2 ([8]). A $B H$-algebra X is called a $B H^{*}$-algebra if it satisfies the identity $(x * y) * x=0$ for all $x, y \in X$.
Example $2.3([4])$. Let $X:=\{0,1,2,3\}$ be a $B H$-algebra which is not a $B C K$ algebra with the following Cayley table:

$*$	0	1	2	3
0	0	1	0	0
1	1	0	0	0
2	2	2	0	3
3	3	3	3	0

Then $A:=\{0,1\}$ is a translation ideal of X.
Lemma 2.4. Let X be a $B H^{*}$-algebra. Then the following identity holds:

$$
0 * x=0, \quad \forall x \in X
$$

Proof. If follows from (II) that $0 * x=(0 * x) * 0=0$ for all $x \in X$. Hence $0 * x=0$.
Definition 2.5. A $B H$-algebra $(X ; *, 0)$ is said to be transitive if $x * y=0$ and $y * z=0$ imply $x * z=0$.

Lemma 2.6. An ideal A of a BH-algebra X has the following property:

$$
(\forall x \in X)(\forall y \in A)(x \leq y \Rightarrow x \in A) .
$$

Proof. Straightforward.

3. Complicated $B H$-algebras

Lemma 3.1. Let A be an ideal of a $B H^{*}$-algebra X. Then A is a subalgebra of X. Proof. If $x, y \in A$, then $(x * y) * x=0$ and so $x * y \in A$. This completes the proof.

The converse of Lemma 3.1 need not be true in general as seen in the following example.
Example 3.2. Let $X:=\{0,1,2\}$ be a set with the following Cayley table:

$*$	0	1	2
0	0	0	0
1	1	0	2
2	2	0	0

Then $(X ; *, 0)$ is a $B H^{*}$-algebra ([8]). Let $A:=\{0,2\}$. Then A is a subalgebra of X but not an ideal of X since $1 * 2=2 \in A$ and $1 \notin A$.

Definition 3.3. Let X be a $B H$-algebra. X is said to be positive implicative if it satisfies the following identity:

$$
(x * y) * z=(x * z) *(y * z), \forall x, y, z \in X .
$$

Example 3.4. Let $X:=\{0, a, b, c\}$ be a $B H$-algebra with the Cayley table as follows:

$*$	0	a	b	c
0	0	0	0	0
a	a	0	a	0
b	b	b	0	0
c	c	c	c	0

Then $(X ; *, 0)$ is a positive implicative $B H$-algebra.
Proposition 3.5. If X is a positive implicative $B H$-algebra, then the following condition holds:

$$
x * y=(x * y) * y, \forall x, y \in X .
$$

Proof. Since X is positive implicative, we have

$$
x * y=(x * y) * 0=(x * y) *(y * y)=(x * y) * y .
$$

This completes the proof.
Lemma 3.6. Let X be a positive implicative $B H^{*}$-algebra. If $x \leq y$, then $x * z \leq y * z$ for any $x, y, z \in X$.
Proof. Let $x, y \in X$ with $x \leq y$. Then $x * y=0$. Since X is positive implicative, we have

$$
(x * z) *(y * z)=(x * y) * z=0 * z=0 .
$$

Hence $x * z \leq y * z$. This completes the proof.
Proposition 3.7. If X is a positive implicative $B H^{*}$-algebra, then X is a transitive BH ${ }^{*}$-algebra.
Proof. Assume that $x * y=0$ and $y * z=0$ for any $x, y, z \in X$. Then we have

$$
\begin{aligned}
x * z & =(x * z) * 0 \\
& =(x * z) *(y * z) \\
& =(x * y) * z \\
& =0 * z=0 .
\end{aligned}
$$

Hence X is a transitive $B H^{*}$-algebra.
For an element a of a $B H$-algebra X, the set $\{x \in X \mid x \leq a\}$, denoted by $A(a)$, is called the initial section of an element a. Since $a \in A(a), A(a)$ is not empty.

Proposition 3.8. Let X be a transitive $B H$-algebra and $x \leq y$. If $y \in A(a)$, then $x \in A(a)$.

Proof. Since $y \in A(a)$, we have $y \leq a$. Hence $x \leq y \leq a$, i.e., $x \leq a$. This implies $x \in A(a)$.
Theorem 3.9. For any a in a positive implicative $B H^{*}$-algebra $X, A(a)$ is the least ideal of X containing a.

Proof. It follows from that $0 * a=0$ for any $a \in X$. Hence $0 \in A(a)$. Let $x * y \in A(a)$ and $y \in A(a)$ for any $x, y \in X$. Then $(x * y) * a=0$ and $y * a=0$. Since X is positive implicative, we have $0=(x * y) * a=(x * a) *(y * a)=(x * a) * 0=x * a$. Hence $x \in A(a)$. Therefore $A(a)$ is an ideal of X. Clearly, $a \in A(a)$.

Let H be any ideal of X containing a. Let $x \in A(a)$. Then $x * a=0 \in H$. Since $a \in H$ and H is an ideal of X, we have $x \in H$. Therefore $A(a) \subseteq H$. Thus $A(a)$ is the least ideal of X containing a.

Corollary 3.10. Let X be a positive implicative $B H^{*}$-algebra. Then $A(a)$ is a subalgebra of X.

Proof. By Lemma 3.1 and Theorem 3.9, $A(a)$ is a subalgebra of X.
Theorem 3.11. Let X be a BH-algebra and let A be an ideal of X and $x \in A$. Then $A(x) \subseteq A$.

Proof. If $y \in A(x)$, then we have $y \leq x$. Hence $y * x=0$. Since A is an ideal of X and $x \in A$, we obtain $y \in A$. Therefore $A(x) \subseteq A$.

For any a, b in a $B H$-algebra X, the set $\{x \in X \mid(x * a) * b=0\}$, denoted by $A(a, b)$, is called a special set of X. Note that $A(a, b)$ is not an ideal of X in general as seen in the following example.
Example 3.12. Let $X:=\{0,1,2,3\}$ be a set with the following Cayley table:

$*$	0	1	2	3
0	0	0	0	0
1	1	0	0	0
2	2	2	0	3
3	3	3	3	0

Then $(X ; *, 0)$ is a $B H$-algebra which is not a $B C K / B C I$-algebra. Let $I:=\{0,1\}$. Then I is an ideal of X. Moreover, it is easy to check that $I=A(0,1)$. It is easy to show that $A(0,3)=\{x \in X \mid(x * 0) * 3=0\}=\{0,1,3\}$, but it is not an ideal of X, since $2 * 3=3 \in A(0,3)$, but $2 \notin A(0,3)$.

An ideal I of a $B H$-algebra X is said to be closed if $0 * x \in I$ for any $x \in I$.
Proposition 3.13. Let I be a subset of a $B H$-algebra X with the following conditions:
(1) $0 \in I$
(2) $x * z \in I, y * z \in I$ and $z \in I$ imply $x * y \in I$ for any $x, y, z \in X$.

Then I is both a subalgebra and a closed ideal of X.
Proof. Let $x, y \in I$. By (II), we have $x=x * 0$ and $y=y * 0$. It follows from (2) that $x * y \in I$. Hence I is a subalgebra of X.
Assume that I satisfies (1) and (2). We claim that I is a closed ideal of X. Let $x * y, y \in I$. Since $0 * 0, y * 0,0 \in I$, it follows from (2) that $0 * y \in I$ which proves
that I is closed. Since $x * y, 0 * y, y \in I$, by applying (2) again, we obtain that $x=x * 0 \in I$, so that I is an ideal of X.

Definition 3.14. Let X be a $B H^{*}$-algebra. If for any $a, b \in X$, the set $A(a, b)$ has the greatest element, then the $B H^{*}$-algebra is said to be complicated.

Note that $A(a, b)$ is a non-empty set, since $0, a, b \in A(a, b)$, where X is a $B H^{*}$ algebra. The greatest element of $A(a, b)$ is denoted by $a \odot b$.
Example 3.15. Let $X:=\{0,1,2,3\}$ be a set with the following Cayley table:

$*$	0	1	2	3
0	0	0	0	0
1	1	0	0	0
2	2	2	0	0
3	3	3	3	0

It is easy to show that $(X ; *, 0)$ is a complicated $B H^{*}$-algebra.
Theorem 3.16. Let X be a positive implicative complicated $B H^{*}$-algebra and let $a, b \in X$. Then the set

$$
\mathcal{H}(a, b):=\{x \in X \mid a \leq b \odot x\}
$$

has the least element, and it is $a * b$.
Proof. The inequality $a * b \leq a * b$ implies that $a \leq b \odot(a * b)$ and so $a * b \in \mathcal{H}(a, b)$. Let $z \in \mathcal{H}(a, b)$. Then $a \leq b \odot z$, which implies from Lemma 3.6 and Definition 3.14 that $a * b \leq(b \odot z) * b \leq z$. Hence $a * b \leq z$ by Proposition 3.7. Thus $a * b$ is the least element of $\mathcal{H}(a, b)$.
Proposition 3.17. Let X be a complicated $B H^{*}$-algebra. Then for any $a, b \in X$, the following hold:
(i) $a \leq a \odot b$ and $b \leq a \odot b$,
(ii) $a \odot 0=a=0 \odot a$.

Proof. Straightforward.
Proposition 3.18. Let X be a positive implicative complicated $B H^{*}$-algebra.
(i) If $x \leq y$, then $x \odot y=y$ for any $x, y \in X$.
(ii) $x \odot x=x$ for any $x \in X$.

Proof. (i) If $x \leq y$, then

$$
\begin{aligned}
0 & =((x \odot y) * x) * y \\
& =((x \odot y) * y) *(x * y)
\end{aligned}
$$

$$
\begin{aligned}
& =((x \odot y) * y) * 0 \\
& =(x \odot y) * y
\end{aligned}
$$

which means that $x \odot y \leq y$. By Proposition 3.17(i), we have $x \odot y=y$.
(ii) Let $y:=x$ in (i). Then $x \odot x=x$.

We provide some characterizations of ideals in a complicated $B H^{*}$-algebra.
Proposition 3.19. Let A be a non-empty subset of a complicated $B H^{*}$-algebra X. If A is an ideal of X, then it satisfies the following conditions:
(i) $(\forall x \in A)(\forall y \in X)(y \leq x \Rightarrow y \in A)$.
(ii) $(\forall x, y \in A)(\exists z \in A)(x \leq z, y \leq z)$.

Proof. Assume that A is an ideal of X. Let $x \in A, y \in X$ with $y \leq x$. Then $y * x=0$. Since A is an ideal of X, we have $y \in A$, i.e., (i) is valid.

Let $x, y \in A$. Since $(x \odot y) * x \leq y$ and $y \in A$, it follows from (i) that $(x \odot y) * x \in A$ so that $x \odot y \in A$ because A is an ideal of X. If we take $z:=x \odot y$, then $x \leq z$ and $y \leq z$ by Proposition 3.17(i). This completes the proof.
Proposition 3.20. Let A be a non-empty subset of a positive implicative complicated $B H^{*}$-algebra X. Then A is an ideal of X if and only if it satisfies the following conditions:
(i) $(\forall x \in A)(\forall y \in X)(y \leq x \Rightarrow y \in A)$.
(ii) $(\forall x, y \in A)(\exists z \in A)(x \leq z, y \leq z)$.

Proof. The necessity follows from Proposition 3.19.
Conversely, let A be a non-empty subset of X satisfying conditions (i) and (ii). Since A is non-empty, we have $0 \in A$ by (i). Let $x, y \in X$ with $y \in A$ and $x * y \in A$. Then, by (ii), there exists $z \in A$ such that $y \leq z$ and $x * y \leq z$. Since X is positive implicative, we have $x * z=(x * z) * 0=(x * z) *(y * z)=(x * y) * z=0$ and so $x \leq z$. Since $z \in A$, it follows from (i) that $x \in A$. Hence A is an ideal of X.

In Proposition 3.19, the condition, "complicated", is very necessary. See the following example.
Example 3.21. Let $X:=\{0,1,2,3,4\}$ be a set with the following Cayley table:

$*$	0	1	2	3	4
0	0	0	0	0	0
1	1	0	1	0	0
2	2	2	0	2	0
3	3	3	3	0	0
4	4	4	3	2	0

It is easy to show that X is a $B H^{*}$-algebra which is not a $B C K / B C I$-algebra. Moreover, X is not complicated, since $A(1,2)=\{z \in X \mid(z * 1) * 2=0\}=\{0,1,2\}$ has no greatest element. It is easy to see that $\{0,1,2\}$ is an ideal of X, but there is no element $z \in\{0,1,2\}$ such that $x \leq z, y \leq z$ in the set $\{0,1,2\}$, proving that the condition, "complicated", is necessary in Proposition 3.19.
Theorem 3.22. Let A be a non-empty subset of a positive implicative complicated $B H^{*}$-algebra X. Then A is an ideal of X if and only if it satisfies the following conditions:
(i) $(\forall x \in A)(\forall y \in X)(y \leq x \Rightarrow y \in A)$.
(ii) $(\forall x, y \in A \Rightarrow x \odot y \in A)$.

Proof. The necessity follows immediately from Proposition 3.19.
Conversely, let A be a non-empty subset of X satisfying conditions (i) and (ii). Obviously, $0 \in A$ by (i). Let $x, y \in X$ satisfying $y \in A$ and $x * y \in A$. Then $y \odot(x * y) \in A$ by (ii). Since $x \leq y \odot(x * y)$ by Theorem 3.16, it follows from (i) that $x \in A$. Thus A is an ideal of X.

4. Essence of $B H$-algebras

Let X be a $B H$-algebra. For any subsets G and H of X, we define

$$
G * H:=\{x * y \mid x \in G, y \in H\} .
$$

Lemma 4.1. Let X be a $B H$-algebra. If $0 \in H \subseteq X$, then

$$
(\forall G \subseteq X)(G \subseteq G * H)
$$

Proof. Let $x \in G$. Then $x=x * 0 \in G * H$ by (II), and so $G \subseteq G * H$.
Lemma 4.2. For any subsets A, B and E of a $B H$-algebra X, we have the following properties:
(i) $A \subseteq B \Rightarrow A * E \subseteq B * E, E * A \subseteq E * B$.
(ii) $(A \cap B) * E \subseteq(A * E) \cap(B * E)$.
(iii) $E *(A \cap B) \subseteq(E * A) \cap(E * B)$.
(iv) $(A \cup B) * E=(A * E) \cup(B * E)$.
(v) $E *(A \cup B)=(E * A) \cup(E * B)$.

Proof. (i) Let $x \in A * E$. Then $x=a * e$ for some $a \in A$ and $e \in E$. Since $A \subseteq B$, it follows that $x=a * e$ for some $a \in B$ and $e \in E$ so that $x \in B * E$. Therefore $A * E \subseteq B * E$. Similarly, we get $E * A \subseteq E * B$.
(ii) Since $A \cap B \subseteq A, B$, it follows from (i) that $(A \cap B) * E \subseteq A * E$ and $(A \cap B) * E \subseteq$ $B * E$ so that $(A \cap B) * E \subseteq(A * E) \cap(B * E)$. Similarly, (iii) is valid.
(iv) Since $A, B \subseteq A \cup B$, we have $A * E \subseteq(A \cup B) * E$ and $B * E \subseteq(A \cup B) * E$ by (i), and so $(A * E) \cup(B * E) \subseteq(A \cup B) * E$. If $x \in(A \cup B) * E$, then $x=y * e$ for some $y \in A \cup B$ and $e \in E$. It follows that $x=y * e$ for some $y \in A$ and $e \in E$; or $x=y * e$ for some $y \in B$ and $e \in E$ so that $x=y * e \in A * E$ or $x=y * e \in B * E$. Hence $(A \cup B) * E \subseteq(A * E) \cup(B * E)$. Thus $(A \cup B) * E=(A * E) \cup(B * E)$. Similarly we can prove that (v) is valid.
Definition 4.3. If a non-empty subset G of a $B H$-algebra X satisfies $G * X=G$, then G is called an essence of X.

Obviously, $\{0\}$ is an essence of a $B H^{*}$-algebra X which is called a trivial essence of X, and X itself is an essence of a $B H$-algebra X. Note that if a is an element of a $B H$-algebra X such that $\{a\} * X=X$, then any proper subset G of X containing a can be not an essence of X.
Example 4.4. Let $X:=\{0,1,2,3\}$ be a set with the following Cayley table:

$*$	0	1	2	3
0	0	0	0	0
1	1	0	1	0
2	2	2	0	0
3	3	2	1	0

Then X is a $B H$-algebra. It is easy to check that $G_{1}=\{0,1\}, G_{2}:=\{0,2\}$ and $G_{3}:=\{0,1,2\}$ are essences of X. But $H:=\{0,3\}$ is not an essence of X, since $3 * 2=1 \notin H$.

Theorem 4.5. Let X be a BH-algebra. Then the following properties hold:
(i) Every essence of X contains the zero element 0 .
(ii) Every essence of X is a subalgebra of X.
(iii) Every ideal of a $B H^{*}$-algebra X is an essence of X.

Proof. (i) Let G be an essence of X. Then $\emptyset \neq G=G * X$, and so there exists $x \in G$ and thus $0=x * x \in G * X=G$.
(ii) Let G be an essence of X and let $x, y \in G$. Then $x * y \in G * G \subseteq G * X=G$ by Lemma 4.2(i) and thus G is a subalgebra of X.
(iii) Let I be an ideal of X. Then $0 \in I$, and so $I \neq \emptyset$. By Lemma 2.6, for any $x \in X$ and $y \in I$, we have $y * x \in I$ since $y * x \leq y$. Thus $I * X \subseteq I$. Obviously, $I \subseteq I * X$ by Lemma 4.1. Therefore $I * X=I$, i.e., I is an essence of X.

The converse of (ii) and (iii) of Theorem 4.5 may not be true as seen the following example.

Example 4.6. In Example 4.4, $G_{3}:=\{0,1,2\}$ is an essence which is not an ideal, and $H:=\{0,3\}$ is a subalgebra which is not an essence of X.
Proposition 4.7. Let G and H be essence of a BH-algebra X. Then $G \cap H$ and $G \cup H$ are essences of X.

Proof. By Lemma 4.1 and Lemma 4.2(ii),

$$
\begin{aligned}
G \cap H & \subseteq(G \cap H) * X \\
& \subseteq(G * X) \cap(H * X) \\
& =G \cap H,
\end{aligned}
$$

and so $(G \cap H) * X=G \cap H$, i.e., $G \cap H$ is an essence of X. Now by Lemma 4.1 and Lemma 4.2(iv), we get

$$
\begin{aligned}
G \cup H & \subseteq(G \cup H) * X \\
& =(G * X) \cup(H * X) \\
& =G \cup H,
\end{aligned}
$$

and thus $(G \cup H) * X=G \cup H$, i.e., $G \cup H$ is an essence of X.
In general, we have the following observation.
Corollary 4.8. If $\left\{G_{i} \mid i \in \Lambda \subset \mathbb{N}\right\}$ is a family of essences of a BH-algebra X, then $\cap_{i \in \Lambda} G_{i}$ and $\cup_{i \in \Lambda} G_{i}$ are essences of X.

Generally, the union of two ideals of a $B H$-algebra may not be an ideal of X. For example, in Example 4.4, $G_{1}:=\{0,1\}$ and $G_{2}:=\{0,2\}$ are ideal of X, but $G_{1} \cup G_{2}=\{0,1,2\}$ is not an ideal of X, since $3 * 1=2 \in G_{1} \cup G_{2}$ and $3 \notin G_{1} \cup G_{2}$. But we know that the above Theorem 4.5 and Proposition 4.7 lead to the following result.

Corollary 4.9. The intersection and union of two ideals of a $B H^{*}$-algebra X are essences of X.

Proposition 4.10. Let X and Y be $B H$-algebras. If G and H are essences of X and Y, respectively, then $G \times H$ is an essence of $X \times Y$.

Proof. Since $(G \times H) *(X \times Y)=(G * X) \times(H * X)=G \times H$, we know that $G \times H$ is an essence of $X \times Y$.

Let G be an essence and H be a subalgebra of a $B H$-algebra X. Then $G \cup H$ is
not an essence of X in general as seen in the following example.
Example 4.11. (i) In Example 4.4, $G_{1}:=\{0,1\}$ is an essence and $H:=\{0,3\}$ is a subalgebra of X, but $G \cup H=\{0,1,3\}$ is not an essence of X, since $3 * 1=2 \notin G \cup H$. (ii) Let $X:=\{0,1,2,3,4\}$ be a set with the following Cayley table:

$*$	0	1	2	3	4
0	0	0	0	0	0
1	1	0	1	0	1
2	2	2	0	0	2
3	3	2	1	0	3
4	4	4	4	4	0

Then $G:=\{0,1,4\}$ is an essence of X and $H:=\{0,3\}$ is a subalgebra of X, but $G \cup H=\{0,1,3,4\}$ is not an essence of X, since $3 * 1=2 \notin G \cup H$.
Proposition 4.12. Let X be a $B H$-algebra. If G is an essence of X and H is a subalgebra of X, then $G \cap H$ is an essence of H.
Proof. Using Lemma 4.1 and Lemma 4.2(i)-(ii), we have $(G \cap H) * H \subseteq(G * H) \cap$ $(H * H) \subseteq(G * X) \cap H=G \cap H \subseteq(G \cap H) * H$, and so $(G \cap H) * H=G \cap H$. Therefore $G \cap H$ is an essence of H.

Theorem 4.13. Let X be a positive implicative $B H^{*}$-algebra. For any $a \in X, A(a)$ is an essence of X containing a.
Proof. Obviously, $a \in A(a)$. Note that $A(a) \subseteq A(a) * X$ by Lemma 4.1. For any $y \in X$ and any $x \in A(a)$, we have $x \leq a$. By Lemma 3.6, $x * y \leq a * y$ and $a * y \leq a$. Hence $x * y \leq a$, i.e., $x * y \in A(a)$. Therefore $A(a) * X \subseteq A(a)$. Thus $A(a) * X=A(a)$, i.e., $A(a)$ is an essence of X.

5. Acknowledgements

The authors wish to thank the referees for their valuable suggestions.

References

1. S.S. Ahn \& J.H. Lee: Rough strong ideals in BH-algebras. Honam Math. J. 32 (2010), 203-215.
2. K. Iséki: On BCI-algebras. Mathematics Seminar Notes 8 (1980), 125-130.
3. K. Iséki \& S. Tanaka: An introduction to the theory of BCK-algebras. Math. Japonica 23 (1978), 1-26.
4. Y.B. Jun, E.H. Roh \& H.S. Kim: On BH-algebras. Scientae Math. 1 (1998), 347-354.
5. J. Meng: Implicative commutative semigroups are equivalent to a class of $B C K$ algebras. Semigroup Forum 50 (1995), 89-96.
6. J. Meng \& Y.B. Jun: BCK-algebras. Kyung Moon Sa, Seoul, 1994.
7. D. Mundici: $M V$-algebras are categorically equivalent to bounded commutative $B C K$ algebras. Math. Japon. 31 (1986), 889-894.
8. E.H. Roh \& S.Y. Kim: On $B H^{*}$-subalgebras of transitive $B H^{*}$-algebras. Far East J. Math. Sci. 1 (1999), 255-263.
${ }^{\text {a }}$ Department of Mathematics Education, Dongquk University, Seoul 100-715, Korea
Email address: duchil@hanmail.net
${ }^{\text {b }}$ Department of Mathematics Education, Dongguk University, Seoul 100-715, Korea
Email address: sunshine@dongguk.edu

[^0]: Received by the editors March 10, 2011. Revised November 9, 2011. Accepted Nov. 17, 2011. 2000 Mathematics Subject Classification. 06F35, 03G25.
 Key words and phrases. an initial section, a special set, a (complicated, positive implicative, transitive) $B H$-algebra, an essence.
 *Corresponding author.

