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Abstract

Tong and Wang’s estimator (2005) is a new approach to estimate the error variance
using least squares method such that a simple linear regression is asymptotically de-
rived from Rice’s lag- estimator (1984). Their estimator highly depends on the setting
of a regressor and weights in small sample sizes. In this article, we propose a new
approach via a local quadratic approximation to set regressors in a small sample case.
We estimate the error variance as the intercept using a ridge regression because the
regressors have the problem of multicollinearity. From the small simulation study, the
performance of our approach with some existing methods is better in small sample
cases and comparable in large cases. More research is required on unequally spaced
points.

Keywords: Difference-based estimator, least squares, Lipschitz condition, nonparamet-
ric regression, ridge regression, Taylor expansion.

1. Introduction

We consider the nonparametric regression model

yi = g(xi) + εi, i = 1, · · · , n, (1.1)

where yi’s are observations, g is an unknown mean function, and εi’s are independent and
identically distributed random error with zero mean and common variance σ2. We assume
that the design points xi’s are equally spaced. The problem we are interested in is estimating
the error variance when the mean g(x) is unknown and a sample size is small. In other word,
the mean g(x) plays the role of a nuisance parameter. The problem of variance estimation
in nonparametric regression with large sample cases was seriously considered from the 1980s
(see, Rice, 1984; Gasser et al., 1986; Hall et al., 1990; Dette et al., 1998; Park, 2009). To
overcome this problem, some methods of estimators use differences to remove trend in the
mean, an idea originating from time series analysis. We refer to estimators in these types as
difference-based estimators which are attractive from a practical point of view because they
often have biases for small sample sizes (Dette et al., 1998).
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Recently, Tong and Wang (2005) proposed a new type of difference-based estimators for
the error variance σ2. This new estimator is a difference-based estimator using least squares.
That is, the error variance is estimated as the intercept in a simple linear regression with
squared differences of paired observations as the dependent variable and squared distances
between the paired covariates as the regressor under asymptotical properties.

As mentioned, all of difference based methods have been developed in large sample cases
but none of them has been analytically attempted in small sample cases. Tong and Wang’s
estimator is a new approach, but the proposed regressor is vague.

In this article, we present a multiple regression model of a lag- k Rice estimator. The
proposed multiple regression model has the problem of multicollinearity when the unknown
mean function satisfies Lipschitz condition and a sample size is small. To overcome this
problem, we employ a ridge regression model. In Section 2, we review some statistical
properties of Tong and Wang’s estimator. In Section 3, we propose some multiple regression
model of the lag- k Rice estimator under Lipschitz condition and a small sample size case.
In Section 4, We compare the performance of our estimator with existing approaches. We
conclude the paper with a brief discussion in Section 5. Some proofs of the technical results
are deferred to Appendix.

2. Tong and Wang estimator

Rice (1984) proposed the lag-k difference-based estimator which is always positively biased.

σ̂2
R(k) =

1

2(n− k)

n∑
i=1+k

(Yi − Yi−k)
2
.

Suppose that the mean function g has a bounded first derivate. Motivated by the expectation
of the Rice estimator, Tong and Wang (2005) proposed

E
(
σ̂2
R(k)

)
= σ2 + Jdk, 1 ≤ k ≤ o(n) (2.1)

where J =
∫ 1

0
[g′(x)]

2
dx/2 and dk = k2/n2. Treating (2.1) as a simple linear regression

model with dk as the independent variable, they considered the linear model

sk = σ2 + βdk + εk, k = 1, · · · ,m (2.2)

and estimated σ2 as the intercept, where sk = σ̂2
R(k) and ek’s are dependent random vari-

ables. Since sk is the average of (n−k) lag-k differences, they assigned weight wk = (n−k)/N
to the observation sk, where N =

∑n
k=1(n− k). Using the weighted least square, the error

variance σ2 was estimated as σ̂2 = s̄w − β̂d̄w where

s̄w =

m∑
k=1

wksk, d̄w =

m∑
k=1

wkdk, and β̂ =

∑m
k=1 wksk(dk − d̄w)∑m
k=1 wk(dk − d̄w)2

.

For selecting m, they proposed three types; m = n1/2 for a small sample size, m = n1/3 for
a large sample size or m = n1/3 regardless of sample sizes.
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Theorem 2.1 Let xi = i/n, i = 1, 2..., n. Then the following properties hold.

(i) σ2 = E
(
σ̂2
)

, if g(x) = a+ bx regardless of the choice of m where a, b ∈ R.

(ii) σ̂2 = yTDy/tr(D), where D = DT
(k)D(k),

D(k) =

−1 0(k−1) 1 0 · · · 0
...

. . .
...

. . .
...

...
0 · · · 0 −1 0(k−1) 1

 ∈ R(n−k)×n

and 0(k−1) is denoted as the number of zeroes being k − 1.
The proof of Theorem 2.1 is omitted as it is straightforward (Tong and Wang, 2005). Their

experience indicated that negative estimates could happen for other functions. The reason
it could happen might be that Tong and Wang’s estimator was asymptotically developed
and the regressors dk and the weights wk were fixed. Therefore we propose a new approach
via a local quadratic approximation to set regressor(s) dk in a finite sample.

3. Error variance estimator using a ridge regression model

3.1. Rice’s lag-k estimator

Park (2011) derived some statistical properties from Rice’s lag- k estimator (1984) in (2.1)
under a small sample size and Lipschitz condition,

|g(xi)− g(xj)| <= ci(j−i)(xi − xj), xj < xi,

for some constant value ci(j−i) >0.

Theorem 3.1 When g(·) ∈ Lip[0, 1] and xi = i/n, some statistical properties of Rice’s lag-
k estimator are

(i) E
(
σ̂2
R(k)

)
≤ σ2 +

k2

2n2(n− k)

∑n
i=1+k c

2
i(k),

(ii) V ar
(
σ̂2
R(k)

)
≤

2σ2k2

n2(n− k)2

(∑n
i=1+k c

2
i(k) −

∑n−k
i=1+k ci(k)ci+k(k)

)
+ 2σ4

tr(D2)

tr(D)2
.

The proof of Theorem 3.1 are provided from Park (2011). From the expectations in (2.1)
and (i) of Theorem 3.1, Rice’s lag- k estimator is always positively biased and the coefficients
depend on the conditions of the unknown function and sample sizes.

Motivated by Theorem 3.1, we fit the linear model

sk = σ2 + βdk + ek, k = 1, 2, ...,m, (m < n), (3.1)

where
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sk = σ̂2(k)

β =
1

2
,

dk =
k2

n2(n− k)

n∑
i=1+k

c2i(k),

E(ek) = 0,

Cov(ei, ej) 6= 0, ∀i 6= j,

and

V ar (ek) =
2k2σ2

n2(n− k)2

(
n∑

i=1+k

c2i(k) −
n−k∑

i=1+k

ci(k)ci+k(k)

)
+ 2σ4 tr(D

2)

tr(D)2
.

Therefore the linear model (3.1) is not a simple regression model because the regressor is
unknown. Tong and Wang (2005), however, treated the expectation of Rice’s lag- k estimator

as a simple linear regression model with dk = k2/n2 and β =
∫ 1

0
[g′(x)]

2
/2dx.

3.2. Local quadratic approximation

From (3.1), using ordinary least squares the regressors could not be estimated. Now we
consider the unknown mean function as a local quadratic function to obtain the regressors
dk. To do this, we assume that g(x) has a bounded second derivative. The regressors could
be fixed and this result is explained in Theorem 3.2.

Theorem 3.2 Suppose that xi = i/n, i = 1, ..., n.
(i) If g(x) = ax2 + bx+ c, then

βdk =
a2k2

2n4(n− k)

n∑
i=1+k

(2i− k)2 +
2abk2(n+ 1)

2n3
+
b2k2

2n2
,

(ii) If g(x) has a bounded second derivative, then

βdk ≤ β1

k2

2n4(n− k)

n∑
i=1+k

(2i− k)2 + β2

k2(n+ 1)

n3
+ β3

k2

n2
.

where β’s are some constants.

The proof of Theorem 3.2 is provided in Appendix. The unknown mean function g(x) can
be locally approximated by a quadratic function as

g(x) = g(t) + g′(t)(x− t) +
g(t)

2
(x− t)2 +Rq>2,

where Rq>2 represents the remainder of Taylor expansion.



Estimation of error variance in nonparametric regression under a finite sample using ridge regression 1227

3.3. Ridge regression model

From Theorem 3.2, we fit the linear regression using an ordinary least square method
(OLS)

sk = σ2 + β1d1,k + β2d2,k + β3d3,k + ek, k = 1, 2, ...,m, (m < n), (3.2)

where

d1,k =
k2

2n4(n− k)

n∑
i=1+k

(2i− k)2, d2,k =
k2(n+ 1)

n3
, d3,k =

k2

n2
.

Since two or all regressors from the above model are highly correlated, the problem of
multicollinearity should occur and OLS could be inappropriate to estimate σ2 as the inter-
cept. To overcome this problem, several methods have been studied; (1) variable(s) deletion
(2) a regression on principal component (3) a ridge regression, etc. In this case, we employ
the ridge regression to estimate σ2, because all regressors are important for estimating the
error variance, whereas the remaining methods are related with model selection.

To estimate the intercept from (3.2), we use ridge regression, proposed by Hoerl and
Kennard (1970a, 1970b), which is an alternative to the principal components regression. In
the linear regression that Y = Xβ+ ε with the design matrix X consisting of the regressors
and ε being an error term from (3.2), the ridge estimator is given by

β̂(t) =
[
XTX + tI

]−1
XTY,

with t ≥ 0, the nonstochastic quantity, being the control parameter. Of course, β̂(0) is the

OLS estimator. The mean and variance of β̂(t) are easily derived as the following;

E
[
β̂(t)

]
=
(
XTX + tIp

)−1 (
XTX

)
β

V ar
[
β̂(t)

]
= σ2

(
XTX + tIp

)−1 (
XTX

) (
XTX + tIp

)−1
.

One of the practical problems in the ridge regression is the choice of t. Popular methods are
the ridge trace plot, cross-validation, generalized cross validation and so on. To choose the
control parameter t, the generalized cross-validation (GCV) is employed which is quite robust
to the violation of model assumptions. One chooses t such that it fulfills some optimality
criteria, e.g. that it minimizes GCV score defined as

1

n

n∑
i=1

 yi − xTi β̂(t)

1−
tr(A(t))

n


2

(3.3)

where xi is the i th column vector in the design matrix X and aii(t) is the i th diagonal
element of

A(t) = X
(
XTX + tI

)−1
XT .

Here we can estimate the error variance σ2 using GCV from (3.3) in the ridge regression.
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4. Simulation study

In our comparisons, we evaluate the performance of Gasser et al., Hall et al., Tong and
Wang’s and our estimator:

1. Estimator proposed by Gasser et al. (GJS):

σ̂2
GSJ =

2

3(n− 2)

n−1∑
i=2

(
1

2
yi−1 − yi +

1

2
yi+1

)2

2. Estimator proposed by Hall et al. (HKT)

σ̂2
HKT =

1

n− 2

n−2∑
i=1

(0.8090yi−1 − 0.5yi+1 − 0.3090yi+2)
2

3. Estimator proposed by Tong and Wang (TW)

σ̂2
TW = s̄w − β̂d̄w,

where wk = (n − k)/N , s̄w =
∑m

k=1 wksk, β̂ = wksk(dk − d̄w)/
∑m

k=1 wk(dk − d̄w)2, d̄w =∑m
k=1 wkdk, dk = k2/n2, and m = n1/3.

4. Our estimator is from the ridge regression in (3.2). We choose m to have the largest
correlation between d1,k’s and sk’s, that is m = arg maxm corr(d1,k’s, sk’s), because of
linearity.

Table 4.1 Mean squares errors (MSE) for n = 10 and a = 1

σ2 σ̂2
GSJ σ̂2

HKT σ̂2
TW σ̂2

RG

0.012
Bias2 6.10E-04 1.31E+00 1.41E-02 4.76E-04

Variance 2.75E-08 3.46E-05 5.92E-06 1.67E-05

MSE 6.10E-04 1.31E+00 1.41E-02 4.93E-04

0.12
Bias2 6.70E-04 1.31E+00 1.48E-02 6.77E-04

Variance 5.59E-05 3.09E-03 5.78E-04 6.83E-04

MSE 7.26E-04 1.32E+00 1.53E-02 1.36E-03

12
Bias2 5.08E-01 1.94E+00 4.43E-01 6.32E-01

Variance 5.09E-01 6.16E-01 4.37E-01 6.38E-01

MSE 1.02E+00 2.56E+00 8.80E-01 1.27E+00

52
Bias2 2.79E+02 1.73E+02 2.48E+02 3.82E+02

Variance 2.82E+02 1.75E+02 2.50E+02 3.84E+02

MSE 5.61E+02 3.48E+02 4.97E+02 7.66E+02

In a simulation study, we use the same simulation setting as in Seifert et al. (1993) and
Dette et al. (1998): g(x) = 5 sin(aπx), where a is the frequency of the unknown mean
function, xi = i/n and εi ∼ N(0, σ2). We consider four different frequencies, a = 1, 4, 10
which correspond to low, median and high oscillation, respectively. The four different error
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Table 4.2 MSEs for n = 10, 15

n a σ2 σ̂2
GSJ σ̂2

HKT σ̂2
TW σ̂2

RG

10

4

0.012 1.84E+01 2.14E+02 1.08E+01 2.70E− 03

0.12 1.84E+01 2.14E+02 1.09E+01 7.92E− 02

12 2.10E+01 2.29E+02 1.32E+01 2.16E + 00

52 6.36E+02 9.56E+02 5.64E + 02 7.72E+02

10

0.012 4.45E+03 6.25E + 02 4.45E+03 8.56E+03

0.12 4.41E+03 6.20E + 02 4.41E+03 8.50E+03

12 4.77E+03 6.94E + 02 4.74E+03 9.13E+03

52 9.98E+03 1.58E + 03 9.73E+03 1.87E+04

15

1

0.012 2.08E− 05 3.31E-01 1.03E-03 2.81E-04

0.12 6.89E− 05 3.27E-01 1.34E-03 2.16E-03

12 6.03E− 01 8.72E-01 5.67E-01 6.85E-01

52 4.80E+02 3.16E + 02 4.62E+02 6.19E+02

4

0.012 1.01E+00 6.59E+01 9.84E-01 3.06E− 03

0.12 1.01E+00 6.60E+01 9.75E-01 6.10E− 03

12 1.59E+00 6.72E+01 1.76E+00 1.22E + 00

52 4.92E+02 4.85E + 02 4.85E + 02 6.57E+02

10

0.012 3.00E+02 3.65E+02 2.72E+02 1.51E + 02

0.12 2.99E+02 3.65E+02 2.72E+02 1.51E + 02

12 3.15E+02 3.83E+02 2.85E+02 1.59E + 02

52 1.25E+03 1.12E+03 1.11E+03 1.06E + 03

variance are σ2 = 0.012, 0.12, 1, 52 and the four different sample sizes are n = 10, 15, 30, 100.
Therefore, we have 48 combinations of simulation settings. For each simulation setting, we
generate observations and estimate all four estimators. We repeat this process 1,000 times
and calculate mean squared errors (MSE) for each estimator.

For the small sample sizes, Table 4.1 and Table 4.2 show that our estimator is comparable
to the others. In particular, for some high oscillation, our estimator performs better.

Table 4.3 also lists MSE when the sample sizes are large. The performance of the GSJ is
better. Our estimator is comparable to the others.

5. Conclusion and further work

In this article, we derive the statistical properties of Tong and Wang’s least square estima-
tor for estimating the error variance in a nonparameric regression which satisfies Lipschitz
condition and has a small sample size. None of the existing difference-based methods deals
with some statistical properties in small sample cases. Under Lipschitz condition and a small
sample size, we propose a new type of Tong and Wang’s least square estimator which esti-
mates the error variance as the intercept in a multiple regression which has some regressors
highly correlated. To estimate the error variance with the problem of multicollinearity, the
ridge regression can be employed and our estimator can be used in any sample size. The
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Table 4.3 MSEs for n = 30 and n = 100

n a σ σ̂2
GSJ σ̂2

HKT σ̂2
TW σ̂2

RG

30

1

0.012 7.30E− 08 2.52E-02 9.29E-05 7.73E-05

0.12 1.94E− 05 2.50E-02 1.13E-04 7.83E-05

12 2.34E-01 1.58E-01 1.64E-01 1.50E− 01

52 1.64E+02 1.54E+02 1.49E + 02 1.49E + 02

4

0.012 4.40E− 03 5.96E+00 8.62E-02 7.92E-02

0.12 4.38E− 03 5.98E+00 8.62E-02 7.92E-02

12 2.42E− 01 6.27E+00 3.12E-01 2.67E-01

52 1.64E+02 1.57E+02 1.50E+02 1.49E + 02

10

0.012 4.66E + 00 1.47E+02 3.26E+01 3.22E+01

0.12 4.64E + 00 1.46E+02 3.25E+01 3.21E+01

12 5.02E + 00 1.46E+02 3.30E+01 3.26E+01

52 1.71E + 02 4.27E+02 2.08E+02 2.09E+02

100

1

0.012 7.97E− 10 2.28E-04 7.28E-07 4.60E-08

0.12 9.11E-06 2.36E-04 6.62E− 0 6.91E-06

12 7.98E-02 5.17E-02 4.95E-02 4.66E− 02

52 4.93E+01 3.38E + 01 3.49E+01 3.75E+01

4

0.012 2.84E− 07 5.79E-02 5.04E-04 2.60E-05

0.12 9.66E− 06 5.83E-02 5.31E-04 3.60E-05

12 7.98E-02 1.04E-01 4.86E− 0 5.55E-02

52 4.93E+01 3.36E + 01 3.51E+01 3.47E+01

10

0.012 4.14E− 04 2.16E+00 1.83E-01 7.82E-03

0.12 4.34E− 04 2.17E+00 1.84E-01 7.91E-03

12 8.04E-02 2.21E+00 2.27E-01 6.77E− 02

52 4.93E+01 3.55E+01 3.52E + 01 3.82E+01

results from Table 4.1 and Table 4.2 show that our estimator is better than others in some
small sample cases and some conditions of unknown functions or comparable to others.

For future work, our approach will be developed based on the remedy of the multicollinear-
ity problem and unequal space intervals in small sample problems.
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Appendix

Proof of Theorem 3.2

Let g(x) = ax2 + bx+ c for a, b, c constants and xi = i/n, i = 1, ..., n. Then we have the
following by Lipschitz condition,

g(xi)− g(xi−k) = ci(k)(xi − xi−k)

⇔ a

(
i2

n2
−

(i− k)2

n2

)
+ b

(
i

n
−
i− k
n

)
= ci(k)

(
i

n
−
i− k
n

)

⇔ a
(2i− k)k

n2
+ b

k

n
= ci(k)

k

n

∴ ci(k) = a
(2i− k)

n
+ b.

and

βdk =
k2

2n2(n− k)

n∑
i=1+k

c2i(k)

=
k2

2n2(n− k)

n∑
i=1+k

[
a

(2i− k)

n
+ b

]2

=
k2

2n2(n− k)

n∑
i=1+k

[
a2 (2i− k)2

n2
+ 2ab

(2i− k)

n
+ b2

]

=
a2k2

2n4(n− k)

n∑
i=1+k

(2i− k)2 +
abk2(n+ 1)

n3
+
b2k2

2n2
.

When g(x) has a bounded second derivative, we have the following;

g(xi)− g(xi−k) ≈

(
i

n
−
i− k
n

)
g′(t) +


(
i

n
− t

)2

−

[(
i− k
n

)
− t

]2
 g′′(t)

2

⇔ g(xi)− g(xi−k) ≈
k

n
g′(t) +

[
i2

n2
−

(i− k)2

n2
+
i− k
n

(2t)−
i

n
(2t)

]
g′′(t)

2

⇔ g(xi)− g(xi−k) ≈
k

n
g′(t) +

(2i− k)k

n2

g(t)′′

2
−
k

n
tg′′(t),

g(xi)− g(xi−k) = ci(k)(xi − xi−k)
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⇒
k

n
g′(ti(k)) +

(2i− k)k

n2

g′′(ti(k))

2
−
k

n
ti(k)g

′′(ti(k)) ≈ ci(k)

k

n
, ti(k) ∈ (xi−k, xi)

∴ ci(k) ≈ g′(ti(k)) +

(
2i− k
n
− 2ti(k)

)
g′′(ti(k))

2
≤ a∗

2i− k
n

+ b∗,

and

βdk =
k2

2n2(n− k)

n∑
i=1+k

c2i(k)

≈
k2

2n2(n− k)

n∑
i=1+k

[
ai(k)

(2i− k)

n
+ bi(k)

]2

≤
k2

2n2(n− k)

n∑
i=1+k

[
a∗

(2i− k)

n
+ b∗

]2

= β1

k2

n4(n− k)

n∑
i=1+k

(2i− k)2 + β2

k2(n+ 1)

n3
+ β3

k2

n2
,

where a∗ = max
{
ai(k)

′s
}

, b∗ = max
{
bi(k)

′s
}

and β’s are some constants.
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