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Exponential family of circular distributions
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Abstract

In this paper, we show that any circular density can be closely approximated by
an exponential family of distributions. Therefore we propose an exponential family
of distributions as a new family of circular distributions, which is absolutely suitable
to model any shape of circular distributions. In this family of circular distributions,
the trigonometric moments are found to be the uniformly minimum variance unbiased
estimators (UMVUESs) of the parameters of distribution. Simulation result and good-
ness of fit test using an asymmetric real data set show usefulness of the novel circular
distribution.

Keywords: Approximation, circular distribution, trigonometric polynomial, uniformly
minimum variance unbiased estimator.

1. Introduction

Circular random variables are found in various areas of research such as biology, medicine,
just to name a few. Because of the periodic nature of a circular variable, it is necessary
to use a circular distribution to model a circular variable. Up to date, there are so many
circular distributions available in literatures and books. Some of them are flexible enough
to model asymmetric or multimodal circular distributions. For various types of circular
distribution, including von Mises (VM) or circular normal distribution, the readers can refer
to Jammalamadaka and SenGupta (2001).

The circular normal distribution, which is symmetric, has been mainly used to model a
circular random variable. However, circular distributions are rarely symmetric, i.e. they are
usually asymmetric and even multi-modal. Therefore, the VM distribution is not suitable
to model such a data set. In fact, this is also the case in linear statistical analysis (Arnold
and Beaver, 2000; Azzalini, 1985) that the normal distribution is often not suitable. One
way to model an asymmetric and multimodal distribution is using a mixture of von Mises
distributions (Batschelet, 1981). Another model suitable for an aymmetric and/or multi-
modal circular distribution is based on nonnegative trigonometric sums (Fernandez-Duran,
2004). Other existing asymmetric and/or bimodal circular distributions are appeared in
Jammadamalaka and Kozubowski (2004), Getto and Jammalamadaka (2007), and Umbach
and Jammalamadaka (2009).
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In this paper, we present a family of circular distributions that is an exponential family
of distributions with a trigonometric polynomial inside the exponent. The novel family of
distributions is useful to model any shape of circular distribution, and possess a particular
advantage of having sample trigonometric moments as the UMVUEs of the parameters.

2. Methodology

2.1. Approximation technique

Proposition 2.1 Every circular density can be closely approximated in the density form
of a full exponential family of distributions, using the trigonometric polynomial of order s,
where s=1, ....

Proof: [Sketch of proof] Let f(6) denote a density of circular distribution, and the Fourier
coefficients of log(f(9)) are given as

2m 2m
c; = / cos(i0) log(f(0))do, i=1,..., 55 = / sin(j0) log(f(9))do, j=1,....
0 0

Then, we approximate the logarithm of the density using the trigonometric polynomial of
order 3, i.e.
f(0) = exp(log(f(0))) = exp(cy cos 8 + s18in 6 + c5 cos 20). (2.1)

In (2.1), one may replace cos20 with sin20. Then, the density of approximated 3-
parameter family of circular distributions is given by

3 1 2
£(0) = 2Trexp(cl cos 0 + s 511.1194—02 cos 26) ’ (2.2)
fo exp(cy cos @ + 51 8in 0 + ¢ cos 26)db

where the integral in the denominator is introduced as the normalizing constant. The density
of approximated 2-parameter family of circular distributions is given by those members of
(2.2) for which ¢; = 0, which becomes the density of a von Mises distribution. The 4-
parameter approximated circular density is, after adding another trigonometric term inside
the exponent of (2.2), given by

exp(cy cos @ + s18in 0 + co cos 260 + sosin 260)
fo% exp(cy cos + s18in 0 + c3 cos 20 + sg sin 20)d9.

f0) =

In this manner, a density of s(= k + m)-parameters family of circular distributions can
be built as shown below, by adding trigonometric terms successively inside the exponent of
(2.3),

10) = exp(XF_, ¢ cosif + > ey 8jsinj6) (2.3)
B fo% exp(XF_, ¢ cosif + D5 sin j6)do .

O

Proposition 2.2 The sample trigonometric moments are given as the complete sufficient
statistics for the parameters in (2.3), therefore they are the uniformly minimum variance
unbiased estimators of the corresponding parameters.
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Proof: Since (2.3) belongs to a full exponential family of distributions, the sample trigono-
metric moments are given as the complete sufficient statistics for the parameters, ¢;’s and
s;’s (Casella and Berger, 2001), where ¢ =1,...,kand j =1,...,m. O

2.2. Error of approximation

Suppose we approximate a circular density with k& + m-parameters family of distributions
as shown in (2.3). The approximation error of log f(#) is given by the sum of all the left out
trigonometric terms in the fourier series expansion, i.e.

oo o0
g ¢; cosif + E 55 sin 7.
i=k+1 j=m+1

Then the root mean square error, squaring log f(6) and integrating over [0,27), is given by

oo

rms = Z (2 + S?),

i=k+1,j=m+1

according to the Parseval’s theorem (Rudin, 1976). The root mean square error for (2.3) is
given by exp(rms), which is smaller than rms since f(6) ranges from 0 to 1.

The convergence rate of the trigonometric polynomial approximation partially depends
on the smoothness and the dimension of the original density. The more smoothness and the
lower in dimension the original density has, the faster the rate of convergence is (Rudin,
1976), where a circular density is a smooth function of a circular variable and the case
of circular distributions in this paper is univariate. It is well known that trigonometric
polynomial approximations of smooth density curves are very close even with the first 2 or
3 terms.

3. Goodness of fit

In this section the proposed family of circular distributions is fitted to an asymmetric
data set. The data set refers to the directions chosen by 100 ants in response to an evenly
illuminated black target and they are randomly selected values by Fisher (1993, p.243) taken
from Jander (1957). Figure 3.1 represents the raw density plot.

From this it is clear that the data set is left-skewed about m, the direction in which a black
target has been placed. The estimation of the parameters was made by using the maximum
likelihood method. The maximum likelihood parameter estimates were obtained by using
the optimization routine function called 'nlm’ in R.

This data set has been analyzed by Fisher (1993) with the aim of fitting a von Mises
distribution using the maximum likelihood estimation method. After checking Q-Q plot and
applying a formal test of goodness of fit, Fisher concludes that the von Mises distribution
is not a suitable model for this data set. To check the goodness of fit of the new model, we
use the Watson’s test (Watson, 1961). The Watson’s test tests Hy : F(a) = Fy() against
Hy, : F(a) # Fo(a), where aq,...,q, constitutes a random sample from a continuous
distribution and Fy(-) is a specified distribution function. Since the observed test statistic
value has the value of 0.001, using its asymptotic distribution found in Jammadamalaka and
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Figure 3.1 Row plot of response directions of 100 ants

SenGupta (2001), we conclude that the fit is good for the new model. Critical values for the
Watson’s statistic are available in Lockhart and Stephens (1985).

4. Simulation

The goodness of fit for approximating a (5 parameter) truncated bivariate circular
distribution given in (4.1) is illustrated in Figure 4.1.
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Figure 4.1 Trigonometric polynomial approximation using the first five terms
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£(0) = ffg exp(cos 8 + cos ¢ + 5cos b cos ¢ + 1.2sin 6 sin ¢)de

0277 0% exp(cosf + cos ¢ + 5cos B cos ¢ + 1.2sin 6 sin ¢)d9d¢.

Since the distribution whose density is given in (4.1) is not in a form of a familiar univariate

circular distribution, the acceptance- rejection sampling method is employed to generate

values of O, using R. The envelope function used is the product of M and the uniform

density, where M denotes the maximum of (4.1). A 3-parameter approximated density of
(4.1), which is overlayed in Figure 4.1 using squares, is shown below:

exp(l.1cos@ — 2.6sin 6 + 3.1 cos 20)

f(a) = 27 . :
Jo exp(1.1cos@ — 2.6sin6 + 3.1 cos 26)df

(4.1)

5. Discussion

It is known that the usual goodness of fit tests based on the x? statistic are not immediately
applicable to circular data since it depends on how the cells are chosen, which in turn will
depend on the choice of origin (Jammalamadaka and SenGupta, 2001). Invariant versions
of such chi-square tests are considered in Ajne (1968) and Rao (1972). Similarly the class of
tests based on the empirical distributions, like the Kolmogorov-Smirnov or the Cramer-von
Mises tests, are also not directly applicable to circular data since their values again depend
on the choice of origin. In this paper, we used the invariant version of such tests which
are due to Kuiper (1960) and Watson (1961). The nearly equal performance of Kuiper’s,
Watson’s and Ajne/s tests was noted by Stephens (1969) by a simulation.

Alternatively, those tests based on the gaps between successive points, called Spacing
tests, can be directly applied to circular data. Indeed, spacings form the maximal invariant
statistic under changes in origin so that every rotationally invariant statistic that is useful
for the circular context, can be expressed in terms of spacings (Jammalamadaka and Sen-
Gupta, 2001). We like to refer our readers to Jammalamadaka (1984) for a survey article
on nonparametric methods for directional data.

In many practical situations, well-known circular models like the von Mises or wrapped
stable densities may not provide an adequate description of the data. In this paper, a method
of approximating a circular density is introduced, which leads to a family of circular distri-
butions that are robust for a large class of possible models. Since any circular density can be
approximated using an exponential family of distributions with a trigonometric polynomial
inside the exponent, we propose an exponential family of distributions with a trigonometric
polynomial inside the exponent as a new family of circular distributions.

Approximation technique was demonstrated using a simulation and an asymmetric real
data set. Theoretical result of error of approximation was provided, however, the numerical
result was not suitable to provide since it involves calculation of the sum of infinitely many
trigonometric terms of the sine and the cosine. The plot of approximated density and the
original density shows that they are almost the same density. The Watson’s goodness of fit
test using Jander’s ants’ data (Jander, 1957) shows that the fit is excellent, while it was
shown in Fisher (1993) that a von Mises distribution does not provide a good fit for the
data set. The novel family of circular distributions has the UMVUESs of the parameters as
the sample trigonometric moments, which is a particularly attracting aspect of the family
of distributions.
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