DOI QR코드

DOI QR Code

Analysis of Ecological Niche in 9th Graders' Genetic Concepts after Instruction

수업에 의해 변화되는 9학년 유전 개념의 생태 지위 분석

  • Received : 2011.03.02
  • Accepted : 2011.06.10
  • Published : 2011.08.30

Abstract

In conceptual ecology, a concept does not exist independently but occupies an ecological niche in ecological environment. Among many biological concepts, genetic concepts are connected to several units including the genetics unit, and within the genetics unit the concepts of sub-areas are highly dependent on one another. For this reason, we analyzed conceptual diversity and conceptual proximity of genetic concepts through the ecological niche approach. For this purpose, we surveyed 995 9th graders. The areas covered in the survey were four genetic concepts: gene, chromosome, mitosis, and meiosis. The questionnaire presented biological concepts or terms related to each area, and the respondent marked the relevance between the presented biological concepts or terms and each area on a scale of 1~30 points. With 9th grade students, we analyzed the change of genetic concepts through class by the ecological niche approach. Through class, the total number of concepts increased in all of the areas, and the increase was smallest in the area of meiosis followed by mitosis, chromosome and gene. Relative density decreased with increases in the number of concepts. The conceptual diversity index also increased through class in all of the areas, and the increase was smallest in the area of meiosis followed by mitosis, chromosome and gene. In addition, difference in the relative density of concepts was reduced after class, and difference in the score of relevance was also reduced and consequently similarity among concepts increased. From these results were drawn conclusions as follows: First, through class, the conceptual diversity of genetic concepts increased. Second, through class, the conceptual proximity of genetic concepts increased.

개념 생태에서 개념은 독립적으로 존재하는 것이 아니라 생태적 환경 하에 놓여 생태 지위를 차지한다. 생물학의 많은 개념들 중에서 유전 개념은 유전 단원 외에도 여러 단원과 관련되어 있으며, 유전 단원 내에서도 영역 사이의 개념 간 의존도가 높은 단원이므로 생태 지위적 접근을 통해 개념의 다양성과 개념 근접성을 분석하였다. 이를 위하여 9학년 학생 995명을 대상으로 하였다. 설문지의 설문 영역은 유전자, 염색체, 체세포분열, 감수분열로 4가지 유전 관련 개념을 대상으로 하였다. 설문지는 각 영역과 관련된 생물학적 개념이나 용어를 제시하게 하고, 제시한 생물학적 개념이나 용어를 각 영역과의 관련된 정도를 1에서 30의 점수로 표시하게 하였다. 9학년 학생들을 대상으로 수업을 통한 유전개념의 변화를 생태 지위적 접근 방법으로 분석하였다. 수업을 통해 전체 개념 수는 감수분열, 체세포분열, 염색체, 유전자 영역 순으로 모든 영역에서 증가하였고, 전체 개념 수의 증가로 인해 상대밀도는 감소하였다. 개념 다양성 지수는 감수분열, 체세포분열, 염색체, 유전자 순으로 모두 증가하였다. 그리고 학습 후 개념들의 상대밀도의 차이가 감소하였으며, 관련성 점수의 차이도 감소하여 개념 간 유사성이 증가하였다. 이 결과를 바탕으로 다음의 결론을 얻을 수 있었다. 첫째, 학습을 통해 유전개념의 개념 다양성이 증가하였다. 둘째, 학습을 통해 유전개념의 개념 근접성이 증가하였다.

Keywords

References

  1. 교육인적자원부(2000). 중학교 교육과정 해설. 대한교과서주식회사.
  2. 김미영, 이길재(2007). 생식과 유전 개념에 대한고등학생들의 개념생태 분석. 한국생물교육학회지,35(4), 678-692.
  3. 김영신(2009). 8학년 학생의 '자극과 반응' 단원 학습 전과 학습 후의 관련 생물학 개념의 분석. 한국생물교육학회지, 37(4), 459-472.
  4. 김우종, 강기훈(2009). 붓스트랩을 이용한 다차원 척도법의 효율성 연구. 한국데이터정보과학회지, 20(2), 301-309.
  5. 김현아, 이동준, 이준규(2006). 중학교 과학 교과서 생명의 연속성 단원의 개념 수준과 구성 체제 분석. 한국생물교육학회지, 34(3), 342-354.
  6. 김희백, 이성조, 김형련, 이선경, 강경미, 김성하 (2002). 유전 개념의 이해를 위한 염색체 모형 이용수업의 효과. 한국생물교육학회지, 30(3), 282-288.
  7. 박소정(2006). 고등학교 생물I 유전 단원 교과서 내용의 비교분석. 경북대학교 교육대학원 석사학위논문.
  8. 어정란(2006). 유전 개념 학습에서 멘델의 법칙에 관한 개념 형성 요소 및 오개념 연구. 경희대학교 교육대학원 석사학위논문.
  9. 엄태동(2004). 브루너의 나선형 교육과정과 초등교육의 두 가지 양상. 초등교육연구, 15, 141-163
  10. 유광찬(2008). 교육과정의 이해. 교육과학사.
  11. 유도재, 김성혁(2005). 호텔 포지셔닝 분석에 있어 다차원척도법의 적용. 관광연구저널, 19(1), 99-111.
  12. 이호준, 변두원, 김창호(1998). 오대산 삼림식생의 종간친화력 및 서열분석. 한국생태학회지, 21(3), 291-300.
  13. 정재훈, 김영신(2011). 생태 지위적 접근을 통한 5학년의 광합성 개념 분석. 한국과학교육학회지, 31(4), 513-527.
  14. 조희형(1985). 고등학교 생물의 기본개념의 확인 및 결정. 한국과학교육학회지, 5(1), 11-17.
  15. 한준, 박찬웅(2001). 인터넷 사이트간의 관계구조와 생태구조: 인터넷 이용자들의 사회적 배경과 특성을 중심으로. 한국사회학, 35(3), 197-221.
  16. Borg, I., & Lingoes. J.(1987). Multidimensional similarity structure analysis. Springer, New York.
  17. BSCS(1995). Developing biological literacy: A guide to developing secondary and postsecondary biology curricula(2nd Ed). Kendall/Hunt Publishing Company. Colorado Springs.
  18. Finley, F. N., Stewart, J., & Yarroch, W. L.(1982). Teachers'perceptions of important and difficult science content. Science Education, 66(4), 531-538. https://doi.org/10.1002/sce.3730660404
  19. Milne, G. R., & Mason, C. H.(1989). An ecological niche theory approach to the measurement of brand competition. Maketing Letters, 1(3), 267-281.
  20. Shannon, C. E.(2001). A mathematical theory of communication. ACM SIGMOBILE Computing and Communications Review, 5(1), 3-55. https://doi.org/10.1145/584091.584093
  21. Southerland, S. A., Johnston, A., & Sowell, S.(2006). Describing teachers'conceptual ecologies for the nature of science. Science Education, 90(5), 874-906.
  22. Sternberg, R. J.(2005). Cognitive psychology, (3rd ED.). 김민식, 손영숙, 안서원(역). 서울: 박학사.
  23. Strike, K. A., & Posner, G. J.(1992). A revisionist theory of conceptual change. In R. A. Duschl, & R. J. Hamilton(Eds.), Philosophy of science, cognitive psychology, and educational theory and practice. Albany, NY: Sate University of New York Press.
  24. Toulmin, S.(1972). Human understanding: The collective use and evolution of concepts. Oxford, UK: Clarendon Press.
  25. Tyler, L. K., Moss, H. E., Durrant- Peatfield, M. R., & Levy, J. P.(2000). Conceptual structure and the structure of concepts: A distributed account of categoryspecific deficits. Brain and Language, 75(2), 195-231. https://doi.org/10.1006/brln.2000.2353
  26. Vandermeer, J. H.(1972). Niche theory. Annual Review of Ecology and Systematics, 3, 107-132. https://doi.org/10.1146/annurev.es.03.110172.000543
  27. Venville, G., & Treagust, D.(1998). Exploring conceptual change in genetics using a multidimensional interpretive framework. Journal of Research in Science Teaching, 35(9), 1031-1055. https://doi.org/10.1002/(SICI)1098-2736(199811)35:9<1031::AID-TEA5>3.0.CO;2-E

Cited by

  1. An Analysis of Conceptual Niche Overlap and Proximity of Concepts relatedto Sensory System according to Gender Differences vol.42, pp.4, 2011, https://doi.org/10.15717/bioedu.2014.42.4.398