DOI QR코드

DOI QR Code

Reliability Assessment for Pressure Uprating of Natural Gas Transmission Pipelines

운전압력 상향을 위한 천연가스배관의 신뢰성 검토

  • 백종현 (한국가스공사 연구개발원) ;
  • 김우식 (한국가스공사 연구개발원)
  • Received : 2010.08.06
  • Accepted : 2011.10.14
  • Published : 2011.10.30

Abstract

It is required to construct the pipelines to eliminate pressure drop at the end of transmission line under limitation of maximum operation pressure of 6.86 MPa, however, it highly costs to build the pipelines and takes time-consuming job. Higher operation pressure compared to current operating pressure has been considered to resolve the problem of pressure drop without modification of the existing pipelines and facilities. As a result of the integrity evaluation, the existing pipelines can be operated up to 7.85 MPa in terms of wall thickness and have higher Charpy impact energy than required value in the ASME B31.8. However, Increment of operation pressure gives rise to increase potential impact area if the pipelines burst due to third party damages.

국내 천연가스 주배관의 가스공급 최대허용운전압력이 6.86 MPa로 제한된 현재 상황에서 배관 관말압력저하를 해소하기 위해서는 배관을 증설 할 수밖에 없는데 이 경우 상당한 비용이 수반된다. 따라서 기존 배관과 설비를 활용한 해결 방안으로 송출압력을 더 높여 배관 운전압력을 상향 조정하여 공급하는 방법을 검토하였다. 배관에 대한 건전성 검토결과, 현재 시공된 배관은 7.85 MPa까지의 운전압력에서도 사용 가능하며, 연성파괴에 대한 저항성을 나타내는 충격흡수에너지는 ASME B31.8에서 요구하는 수치보다 더 높은 값을 가지고 있으며, 외부충격손상시 배관 변형을 위한 소요 하중은 배관 내압 증가에 따라 증가하였다. 그러나 배관의 운전압력이 증가함에 따라 가스 폭발 시 피해범위는 증가한다.

Keywords

References

  1. Howard G. Murphy, Jr., "Reconsideration of Maximum Allowable Operating Pressure: Costs and Benefits -Macroeconomic View", Proceeding of Reconsideration of Maximum Allowable Operating Pressure for Class Locations, March 21, (2006)
  2. Mark Docherty, "Experience with the Pressure Uprating of Gas Transmission Pipelines in the United Kingdom", Proceeding of Reconsideration of Maximum Allowable Operating Pressure for Class Locations, March 21, (2006)
  3. Charanjit Jandu, Paul Cousens, Steve Wheat and Neil Bramley, "An integrated integrity management approach to uprating high pressure gas transmission pipelines and above ground installations", IPC04-0604, Proceedings of International Pipeline Conference 2004, Calgary, Alberta, Canada, American Society of Mechanical Engineers, (2004)
  4. Francis, A, Edwards, A.M. & Espiner, R.J., "Guidelines For The Use of Structural Reliability and Risk Based Techniques To Justify Operation of Onshore Pipelines at Design Factors Greater Than 0.72", Proceedings of 21st World Gas Conference, Nice, (2000)
  5. Rainer H., Thomas P., "Two-step method verifies uprating of older german gas pipeline", Oil & Gas Journal, March 1, (2004)
  6. API RP 579, "Fitness-for-Service", American Petroleum Institute, (2007)
  7. BS 7910, "Guide to methods for assessing the acceptability of flaws in metallic structures", British Standards Institution, (1999)
  8. "Facility / Technical / Inspection / Safety Diagnosis Code for Pipes Outside of Producing and Supplying Places of Wholesale Gas Business", KGS FS451, (2009)
  9. ASME B31.8 "Gas Transmission and Distribution Piping Systems", (2010)
  10. KOGAS Research Report, "A study on fracture behavior of natural gas pipelines", (1997)
  11. ASME B 31.8S "Managing System Integrity of Gas Pipelines", (2010)
  12. ABAQUS version 6.9, ABAQUS Inc., Rhode Island, USA, 2009.
  13. Brooker D.C., "Numerical modelling of pipeline puncture under excavator loading. Part II: Parametric study", Int. J. Pressure Vessels and Piping, Vol. 80, Issue 10, pp. 727-735, (2003) https://doi.org/10.1016/j.ijpvp.2003.08.002
  14. J.H. Liu, A. Francis, "Theoretical analysis of local indentation on pressured pipes", Int. J. Pressure Vessels and Piping, Vol. 81, pp. 931-939, (2004) https://doi.org/10.1016/j.ijpvp.2004.05.007