DOI QR코드

DOI QR Code

정전기 방전에너지에 따른 가솔린-공기 혼합물의 화염전파

Flame Propagations of Gasoline-Air Mixtures by Electrostatic Discharge Energies

  • 박달재 (서울과학기술대학교 안전공학과) ;
  • 김남일 (서울과학기술대학교 산업대학원 안전공학과)
  • Park, Dal-Jae (Dept. of Safety Engineering, Seoul National University of Science and Technology) ;
  • Kim, Nam-Il (Dept. of Safety Engineering, Graduate School of Industry, Seoul National University of Science and Technology)
  • 투고 : 2010.12.13
  • 심사 : 2011.04.12
  • 발행 : 2011.06.30

초록

실린더형 챔버내에서 정전기 방전에너지 변화에 따른 가솔린-공기 혼합물의 화염전파에 관한 영향을 조사하기 위해 실험적 연구를 수행하였다. 3개의 서로 다른 정전기 방전 에너지(1 mJ, 50 mJ 및 98 mJ)를 실험변수로 사용하였으며, 점화원 전극 주변의 미연소가스 유동장을 가시화하기 위해 고속 PIV 시스템을 적용하였다. 정전기 방전 에너지가 증가할 때, 점화원 핵은 찌그러면서 초기화염에 영향을 미치는 것으로 나타났다. 초기화염 동안에 화염속도는 점화에너지가 높을수록 증가하는 것으로 나타났으나, 초기화염 이후에 시간이 증가할수록 화염속도는점화에너지에 관계없이 거의 유사하였으며, 이는 문헌[5]에서 보여진 전산유체 모델링 결과의 경향과 거의 유사하였다. 또한, 점화에너지가 증가할 때 전파하는 화염 전면의 미연소가스 속도장은 증가하는 것으로 나타났다.

Experimental studies were carried out to investigate the effects on flame propagation of gasoline-air mixtures by different electrostatic discharge energies in a cylindrical chamber. Three different ignition energies were used: 1 mJ, 50 mJ and 98 mJ. In this work, a high-speed particle image velocimetry technique was applied to visualize the flow-field around ignition electrodes. It was found that as the ignition energy increased, the ignition kernel was different. The different ignition kernel caused different flame initiation. During the flame initiation, the higher ignition energy was applied, the higher flame speed was observed. However, with increasing time, the flame speeds were independent of the ignition energies used. Theses observed flame behaviors were similar to computational simulations shown in the literature. It was also found that as the ignition energies increased, the velocities of unburnt mixtures ahead of propagating flame fronts increased.

키워드

참고문헌

  1. Hjertager, B.H., Fuhre, K. and Bjorkhaug, M., "Concentration effects on flame acceleration by obstacles in large-scale methane-air and propane-air vented explosions", Combustion Science and Technology, 62, 239-256, (1988) https://doi.org/10.1080/00102208808924011
  2. Phylaktou, H., Andrews, G.E., "Gas explosions in long closed vessels" Combustion Science and Technology, 77, 27-39, (1991) https://doi.org/10.1080/00102209108951718
  3. Moen, I.O., Bjerketvedt, D., Jenssen, A. and Thibault, P.A., "Transition to detonation in a large fuel-air cloud", Combustion and Flame, 61, 285-291, (1985) https://doi.org/10.1016/0010-2180(85)90109-9
  4. McKay, D.J., Murray, S.B., Moen, I.O and Thibault, P.A., "Flame-jet ignition of large fuel-air clouds", Twenty-Second on Combustion, Pittsburgh, 1339-1353, (1989)
  5. Bradley, D., Gaskell, P.H. and Gu, X.J., "Burning velocities, Markstein lengths, and flame quenching for spherical methane-air flames: A computational study", Combustion and Flame, 104, 176-198, (1996) https://doi.org/10.1016/0010-2180(95)00115-8
  6. Zhen, G., Leuckel, W., "Effects of ignitors and turbulence on dust explosions", Journal of Loss Prevention in the Process Industries, 10, 317-324, (1997) https://doi.org/10.1016/S0950-4230(97)00021-1