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ABSTRACT. This work proposes a binomial method for pricing the cliquet options, which
provide a guaranteed minimum annual return. The proposed binomial tree algorithm simplifies
the standard binomial approach, which is problematic for cliquet options in the computational
point of view, or other recent methods, which may be of intricate algorithm or require pre- or
post-processing computations. Our method is simple, efficient and reliable in a Black-Scholes
framework with constant interest rates and volatilities.

1. INTRODUCTION

Financial derivatives have become extremely popular, which provide a form of insurance in
hedging or speculate on the value of the underlying asset. A cliquet option or ratchet option
consists of financial derivatives, called forward start options, which start at-the-money or pro-
portionally in- or out-of-the-money after a known reset date in the future. Since cliquet options
may be globally and locally floored and capped, they provide a guaranteed minimum return
in exchange for capping the maximal return earned each period over the life of the contract
[1]. After experiencing a rapid falling financial market, investors demand products that reduce
downside risk while still offering upside potential. The structure of cliquet options meets this
demand and attracts large pension funds, portfolio insurers and retail investors as well.

For an European forward start option, there exist closed form solutions [2] under Black-
Scholes model and [3] under Heston’s stochastic volatility model. However, there exists no
closed form solution for cliquets, and therefore one may rely on numerical approximations.
There have been studies to valuate cliquets. Wilmott [4] introduced a finite difference method
by solving a set of one dimensional PDEs embedded in a higher dimensional space. Wind-
cliff et al. [5] studied PDE methods for jump diffusion models, calibrated volatility surface
models and uncertain volatility models. Den Iseger and Oldenkamp [6] presented a Laplace
transform inversion technique for different models. These works focus on reducing the model
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risk due to the difficulties of correct pricing of the forward volatility smile, such as studying the
sensitivity of a cliquet option under local volatility, stochastic volatility, jump diffusion model
etc.

Cliquet options are path-dependent contracts, and therefore it is not easy to make an efficient
binomial tree method. Nevertheless, it is important to design an accurate and efficient binomial
method, since binomial method is quite simple to implement and particularly useful for Ameri-
can and Bermudan type options. There has been not much work of binomial method for cliquet
options. However there are recent studies to adapt the classical binomial tree model to cliquets.
Gaudenzi and Zanette [8] compute a continuous representation of the cliquet option price as a
piecewise linear function of the sum of the returns based on the singular points techniques. But
the number of singular points grows rapidly at every monitoring date which eventually needs
complicated pre- and post-processing to reduce this number.

Hull and White [7] extend the classical binomial method to valuate path-dependent Asian
options by pricing the options for a predetermined representative set of values for average asset
prices. Inspiring from this idea, we propose a new binomial tree method by introducing a
suitable representative set of values for the cliquet option. In particular, this representative set
can be reduced to one element due to the special structure of cliquet option. This method is
quite simple and computational examples illustrate its convergence to the continuous value.

The outline of the paper is as follows. Since a cliquet option consists of forward starting
options, we first describe and illustrate the binomial model for both European and American
forward start options in Section 2. In Section 3 we derive a new binomial method for pricing
cliquet options with cap and floor type by introducing a representative set of values for the
returns of the option along the path named Middle. Numerical experiments illustrate the effi-
ciency and accuracy of the new method in Section 4. A summary and some concluding remarks
are given in Section 5.

2. FORWARD START OPTIONS

Let us first consider a forward start option which commences at some specified future date
with an expiration further in the future. An application of forward start options is employee
stock options, which typically has a forward start feature since its strike price is not fixed when
the employee begins to work.

Let us consider the price of the underlying asset as a stochastic process {St}t∈[0,T ], which
satisfies the following stochastic differential equation:

dSt = µStdt+ σStdWt, 0 < t < T, (2.1)

where µ is an expected rate of return, σ is a volatility, T is an expiration date, and Wt is a
Brownian motion. If we consider a continuous dividend yield q, the drift rate becomes µ − q
instead of µ in (2.1).

A forward start option with time to maturity T starts at-the-money or proportionally in-
or out-of-the-money after a known elapsed time t∗ in the future. The strike is set equal to a
positive constant α times the asset price St∗ after the known time t∗. Under the Black-Scholes
model, European forward start option can be priced using the Rubinstein formula, see [2, 1].
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However, the price of an American forward start option needs to be numerically approximated
and we propose a simple and efficient binomial tree method.

2.1. The binomial model. Let us partition the interval [0, T ] into N cells of uniform length
∆t = T/N and let 0 = t0 < t1 < ... < tN = T . Assume that the known elapsed time t∗ in
the future is one of the nodes, t∗ = tm for some m with 0 < m < N .

FIGURE 1. The structure of a binomial tree method for a forward start option.

The binomial method by Cox et al. [9, 10, 11] assumes that the asset price S(tn) at t = tn
moves either up to uS(tn) for u = exp(σ

√
∆t) or down to dS(tn) for d = exp(−σ

√
∆t) and

d < exp(r∆t) < u with probabilities p = (exp(r∆t) − d)/(u − d) or 1 − p, respectively.
From the present asset price S0

0 at t0, the price Sn
j at tn can be computed by

Sn
j = dn−jujS0

0 , 0 ≤ j ≤ n, 0 ≤ n ≤ N .

Then the standard binomial method calculates the payoffs of the option at expiry, V N
j = Λ(SN

j )

with a given payoff Λ(·) of the derivatives for j = 0, 1, ..., N , and computes the option price
V 0
0 = V (S0

0 , 0) by backward averaging,

V n
j = e−r∆t

(
p V n+1

j+1 + (1− p) V n+1
j

)
, 0 ≤ j ≤ n , (2.2)

for n = N − 1, N − 2, · · · , 0.
For an European forward start option, if the dashed line in Figure 1 represents t = t∗ when

the strike price is determined, there are m + 1 values on the dashed line. Once the strike
priced is set, the domain of dependence for the strike price can be found. For instance, if
the asset price at the star node in Figure 1 is S∗, the path through the star remains within the
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shaded region in the figure for the remaining of the contract and the strike price is αS∗ there.
Therefore we have m+1 different vanilla option problems starting at t∗ = tm and maturing at
tN with strike price αS∗ = αSm

j for 0 ≤ j ≤ m, respectively. We solve these vanilla option
problems using the standard backward averaging in (2.2) for n = N − 1, N − 2, · · · ,m with
the payoffs at expiry, for instance with V N

j = max(SN
j −αS∗, 0) for the call option. Once we

compute the option values at t∗ = tm, we again apply the backward averaging (2.2) in order to
compute the option value, V 0

0 , at present. When the European forward start option price is of
interest, the computation can be simplified further as follows. The option price V m

j at the node
corresponding to Sm

j for 0 ≤ j ≤ m is obtained by

V m
j = e−(N−m)r∆t

N−m∑
k=0

(
N−m

k

)
pk(1− p)N−m−k max{S0u

kdN−m−k − αSm
j , 0} . (2.3)

Then the option price V 0
0 at t = 0 is computed by

V 0
0 = e−mr∆t

m∑
k=0

(
m
k

)
pk(1− p)m−kV m

j . (2.4)

For American options, it is similar to the European case except an extra comparison step
during the backward averaging. Since the American case allows early exercise, one may choose
the better between two possibilities, retaining (2.2) or exercising Λ(Sn

j ), the payoff at time tn
and asset price Sn

j . Therefore this leads to the following averaging process

V n
j = max

{
Λ(Sn

j ), e
−r∆t

(
p V n+1

j+1 + (1− p) V n+1
j

)}
, 0 ≤ j ≤ n , (2.5)

for n = N − 1, N − 2, · · · , 0. For the American forward start option, we apply the above
averaging relation (2.5) from expiry to time t∗ = tm for m + 1 different American vanilla
options with the strike αS∗ = αSm

j for 0 ≤ j ≤ m, respectively. After we calculate the option
values at t∗ = tm, we apply (2.5) once again from time tm to present t0 with the strike price
αS0

0 . If one allows early exercise only after the reset date t∗, this gives a so-called Bermudan
forward start option.

2.2. Numerical examples. The left graph in Figure 2 shows the convergence of the binomial
method for European forward start call option when the initial stock price S0

0 = 60, the time
to maturity T = 1, the risk-less interest rate r = 8%, the stock volatility σ = 30% and the
instantaneous dividend yield rate q = 4%. The option starts 10% out-of-the-money at three
months from today, namely α = 1.1, t∗ = 0.25 and the strike is αS(t∗). It shows that compared
to the Black-Scholes price in [1], the error |V 0

0 −C(S0
0 , 0)| in the new binomial method tends to

zero as N → ∞. We can see a typical saw-tooth pattern in the sequence of approximations as
N increases. The reference curve f(x) = αe−βx with α = 0.0297 and β = 0.0033 is given in
the figure to estimate the approximate convergence rate. The right graph in Figure 2 shows the
comparison of the option values for European, American and Bermudan forward start options.
Though it is not possible to compare with exact formulas for American and Bermudan cases,
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FIGURE 2. Convergence of the binomial method for an European forward
start put option (left) and an American forward start put option (right).

we can see that the option values converge to slightly higher values than that from the European
case as N → ∞.

3. CLIQUET OPTIONS

Let us divide the interval [0, T ] into Nobs subintervals called reset periods of length ∆T =
T/Nobs. {Ti = i∆T} with T0 = 0 and TNobs

= T are called reset days. The return of an asset
with the price S is defined as

Ri =
Si − Si−1

Si−1
.

Truncated return over a reset period [Ti−1, Ti) is

R̄i = max (Floc,min (Cloc, Ri)) ,

where Cloc and Floc are local cap and local floor, respectively. The cliquet option is a series
of forward start option with a single premium determined up front, which lock in any gains on
reset dates. The payoff V is the sum of truncated returns bounded by global cap or global floor.

V = e−rTB E

[
min

(
max

(
Nobs∑
i=1

R̄i, Fglob

)
, Cglob

)]
(3.1)

where B is the notional amount, which is set to 1 in this study.
The American cliquet option allows the holder of the option to exercise it at any time, then

paying at t [12],

Λ(S(t)) = Bmin
(
max

(
z +min

(
max

(
S(t)/S̄ − 1, Floc

)
, Cloc

)
, Fglob

)
, Cglob

)
, (3.2)

where z =
∑m−1

i=1 R̄i is the sum of truncated returns up to the moment t assuming t ∈
[Tm−1, Tm), S(t) is the asset price at t and S̄ is the asset price at Tm−1.



88 K.-S. MOON AND H. KIM

Upper

Lower

Middle

FIGURE 3. The structure of a binomial tree method for a cliquet option.

We propose a binomial tree method so that the prices of European and American cliquet
options can be estimated. Suppose that the dashed lines in Figure 3 represent the reset days
and backward averaging is performed at the node marked star. As in Figure 1 in Section 2,
if the asset price path passes through the star node, the path remains within the shaded region
in the figure for the remaining of the contract. But, there is a difference over the forward
start option when the backward induction procedure is performed. In case of the forward start
option in Section 2, how the asset price reaches the star node is not important, but only the
value of the asset at the star node matters as in (2.3). In case of the cliquet option, however,
the path from the initial node at t = 0 to the star node determines the option values to be
used for the backward induction. In other words, the backward induction at one point may
result in two different option prices if two paths of asset prices are different because

∑Nobs
i=1 R̄i

values in (3.1) are different for different paths. Thus, even though the cliquet option may be
considered a generalization of the forward start option, the implementation algorithm of the
binomial method for the forward start option cannot be directly applied to the cliquet option.

For the path-dependent options such as the cliquet option, it is impossible in practice to apply
the standard binomial tree method [9] because the number of paths may increase exponentially.
Thus, Hull and White [7] proposed to use two paths called Upper and Lower in Figure 3 for
such a path-dependent option. For the Asian option with arithmetic average, for example, these
paths are meaningful because Upper and Lower paths make the average asset price up to the star
node maximum and minimum, respectively. These paths, however, neither result in maximum
or minimum payoffs in case of the cliquet option, nor bound the payoff even when a path is
within these paths. Thus the binomial method for path-dependent options by Hull and White
needs to be adjusted.



BINOMIAL METHOD FOR CLIQUET OPTIONS 89

We propose a binomial tree method assuming that when the backward induction is per-
formed at a given node, asset price paths up to the node may be represented by one appropriate
path. For example, if the backward induction is considered at the star node in Figure 3, all
the possible paths after the star in the shaded region are considered during each reset period
but only one appropriate path before the star will be considered. Various types of paths have
been tested in various problems and the path right in the middle between Upper and Lower,
called Middle in the Figure 3 has been selected as this appropriate path due to the accuracy and
also simplicity of coding. In fact, it shows the accuracy comparable to that from the standard
binomial method [9]. See the Appendix for the various types we considered and the results
from several examples.

The backward induction procedure can be summarized as follows. Suppose that the back-
ward induction is performed at the star node in Figure 3 and the star node corresponds to t = t∗.
The asset price may increase by a factor of u during the next time-step ∆t or decrease by a fac-
tor of d in the binomial method, where ∆t denotes the time-step size of the binomial tree. Note
that ∆T above represents the reset interval size of the cliquet option. If {S0, S1, . . . , SM} de-
notes the asset prices following the path Middle, there may not be option prices at t = t∗+∆t in
the binomial tree corresponding to {S0, S1, . . . , SM , uSM} or {S0, S1, . . . , SM , dSM}. Thus,
the option prices corresponding to these paths are obtained by the interpolation, then the ordi-
nary backward averaging procedure is performed on these interpolated values. This procedure
is repeated up to the point t = 0 to derive the option price at present. When the early exercise
is allowed as in the American option, the averaged option price is compared with the payoff
(3.2) to check whether it is optimal to exercise or not.

Note that there is a modeling error when all the asset paths up to a node in the tree are
represented by a single path, but this error seems to be quite negligible based on the results
from numerical experiments in Section 4. The accuracy of the proposed binomial method is
as accurate as those from the standard binomial method [9] or recent methods [8] and this
computationally shows that the proposed algorithm is reliable and works well.

4. NUMERICAL EXPERIMENTS

The proposed binomial algorithm has been compared with the recent singular point method
by Gaudenzi and Zanette in [8] and other well-known methods therein for the European cliquet
options and with the method by Kjaer in [12] for the American cliquet options. Figures 4 and
5 and Tables 1 and 2 show that the proposed scheme is as accurate as the standard binomial
method or recent singular point method, and eventually outperforms these because the standard
binomial method is problematic in the computational point of view when the number of time
steps is large and the singular point method requires additional pre- and post-processing work.
Figure 6 and Table 3 show that the proposed method can be extended to cliquet options with
early exercise.

4.1. European option. Figure 4 compares the results of the European cliquet option using the
parameters from Gaudenzi and Zanette [8] with Floc = 0, Cloc = 0.08, Fglob = 0.16, Cglob =
∞, Nobs = 5, T = 5, r = 0.03, σ = 0.2. The result from the proposed algorithm with path
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FIGURE 4. The first example of European cliquet option from Gaudenzi and Zanette [8].

Middle is labeled Proposed. SP and BIN represent result from the singular point method in-
troduced in Gaudenzi and Zanette [8] and the result from the standard binomial method [9].
FD denotes the value from the finite difference algorithm with similarity reduction technique
provided by Windcliff et al. [5]. MC corresponds to the result from the Monte Carlo method
with 106 number of realizations. Since there is no known exact solution for this cliquet option,
the value from the standard binomial method with 104 time steps is assumed to be exact and
results from various methods are compared to this BIN value. The figure shows that our pro-
posed algorithm is as accurate as SP by Gaudenzi and Zanette or the standard binomial method,
and performs better than the finite difference method or the Monte Carlo method.

TABLE 1. Comparison of European cliquet option prices for the first example
from Gaudenzi and Zanette [8].

N Proposed SP BIN FD MC
200 0.173639948 0.173716366 0.173716366 0.174467 0.174106
500 0.173893240 0.173922671 0.173922597 0.174230 0.174106
1000 0.174043503 0.174051983 0.174051949 0.174099 0.174106
2000 0.174011443 0.174019094 0.174018925 0.174066 0.174106

Table 1 compares European cliquet option prices for several numbers of time steps of the
tree, N . The proposed scheme gives the accuracy comparable to the SP method by Gaudenzi
and Zanette [8].
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FIGURE 5. The second example of European cliquet option from Gaudenzi
and Zanette [8].

Figure 5 compares the results of the European cliquet option using the parameters from
Gaudenzi and Zanette [8] with Floc = 0, Cloc = 0.08, Fglob = 0.16, Cglob = ∞, Nobs =
5, T = 5, r = 0.03, σ = 0.02. The exact solution for this cliquet option is not known as above
and results from various methods are compared to the BIN value from the standard binomial
method with 104 time steps. Similarly to the case of Figure 4, results from the proposed
method and the singular point method are very close to the result from the standard binomial
method and show better result than the Monte Carlo method when the number of time steps
is sufficiently large. In this example, the proposed method performs slightly better than the
singular point method.

TABLE 2. Comparison of European cliquet option prices for the second ex-
ample from Gaudenzi and Zanette [8].

N Proposed SP BIN MC
200 0.150463462 0.150466827 0.150465004 0.150525
500 0.150507165 0.150510524 0.150508871 0.150525

1000 0.150521647 0.150523963 0.150522368 0.150525
2000 0.150529597 0.150531287 0.150529922 0.150525

Table 2 also compares European cliquet option prices, which shows again that the proposed
scheme is reliable and performs moderately better than the singular point method.
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FIGURE 6. American cliquet option from Kjaer [12].

4.2. American option. Figure 6 compares the results for the American cliquet option using
the parameters from Kjaer [12], Floc = −0.1, Cloc = 0.1, Fglob = 0, Cglob = ∞, Nobs =
6, T = 3, r = 0.05, σ = 0.3. Proposed scheme gives very good accuracy, whose value
converges to the value from Kjaer [12]. European cliquet option price is shown as a reference.

TABLE 3. Comparison of American cliquet option prices for the example
from Kjaer [12].

Proposed Kjaer
N = 1200 N = 2400 N = 3600 N = 4800 N = 6000

0.105527653 0.106950983 0.107042909 0.106573191 0.106639224 0.1066

Table 3 compares American cliquet option prices, which illustrates that the proposed scheme
is accurate even when the early exercise is allowed as in the American option.

5. CONCLUSIONS

A binomial method is proposed for pricing European and American cliquet options in a
Black-Scholes framework. Recent methods for the cliquet option are of complicated algorithm
or require supplementary pre- or post-processing computations. For instance, the singular point
method by Gaudenzi and Zanette requires pre-processing calculations in order to find singular
points and also requires elimination procedures. But, the proposed algorithm can be easily
implemented while eliminating supplementary computations and maintaining the accuracy. In
addition, it can be easily extended to American or Bermudan cliquet options.



BINOMIAL METHOD FOR CLIQUET OPTIONS 93

6. APPENDIX

Given a node P of the binomial tree for the cliquet option, we considered and tested several
paths between the initial node at time t = 0 and the node P . See Figure 7. First, we considered

Upper

Lower

Linear

P

FIGURE 7. Various paths we tested.

two paths called Upper and Lower, which Hull and White [7] initially proposed to use for the
path-dependent options. These made the average asset price up to the node P maximum and
minimum, respectively, in case of the Asian option with arithmetic average. We then considered
the path right in the middle between Upper and Lower, called Middle (shown in the Figure 3).
We also considered the path called Linear, which is closest to the linear line from the initial
node to the node P as in Figure 7. We then considered the average path among Upper, Linear
and Lower and called it Avg. We then tested four examples, two examples from Gaudenzi and
Zanette [8], one example from Kjaer [12] and one example with our own selection of parameter
values.

Figure 8 shows the result when parameters from Gaudenzi and Zanette [8] are used, Floc =
0, Cloc = 0.08, Fglob = 0.16, Cglob = ∞, Nobs = 5, T = 5, r = 0.03, σ = 0.2. Results from
our algorithm with five different paths, Upper, Linear, Lower, Middle, and Avg, are compared
with the results from the standard binomial method (BIN) [9], the finite difference algorithm
with similarity reduction technique (FD) provided by Windcliff et al. [5] and the Monte Carlo
method (MC) with 106 number of realizations. Our method with above mentioned paths except
Linear show very good convergence to the result from the standard binomial method, and
even better result than the finite difference method or the Monte Carlo method. As shown in
Section 4, the results from the proposed method are as accurate as the method by Gaudenzi
and Zanette [8]. We also tested another European cliquet option example in [8] using Floc =
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FIGURE 8. Results for the first example of European cliquet option from Gau-
denzi and Zanette [8].

0, Cloc = 0.08, Fglob = 0.16, Cglob = ∞, Nobs = 5, T = 5, r = 0.03, σ = 0.02. The results
were similar to the first example above and were omitted here.
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FIGURE 9. Results using parameters of our own
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Figure 9 shows the result when Floc = 0, Cloc = 0.08, Fglob = 0.16, Cglob = ∞, Nobs =
5, T = 1, r = 0.05, σ = 0.3 are used. The results from the proposed method are very close to
the price 0.18070 from the Monte Carlo method with 106 number of realizations except Linear
path results in some error and Avg path gives marginal discrepancy.
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FIGURE 10. Results for the example of European cliquet option from Kjaer [12].

Figure 10 shows the result when parameters from Kjaer [12] are used, Floc = −0.1, Cloc =
0.1, Fglob = 0, Cglob = ∞, Nobs = 6, T = 3, r = 0.05, σ = 0.3. Values from our paths
are very close to the value 0.0773 from Kjaer [12], or the value 0.0778 from the Monte Carlo
method with 106 number of realizations.

Based on the examples above, our proposed method with path Middle performs quite well
for the cliquet option and we propose to use it in our study. It is observed that taking any one of
three paths, Upper, Lower, or Middle, results in indistinguishable behavior and the final option
price. See Figures 8, 9 and 10. The authors are expecting that this results from the special
structure of the cliquet option and performing in-depth analysis on this aspect.
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