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ABSTRACT. I introduce a derivative called “Snowball Currency Option” or “USDKRW Snow-
ball Extendible At Expiry KO” which was traded once in the over-the-counter market in Korea.
A snowball currency option consists of a series of maturities the payoffs at which are like those
of a long position in a put option and two short position in an otherwise identical call. The
strike price at each maturity depends on the exchange rate and the previous strike price so that
the strike prices are random and path-dependent, which makes it difficult to find a closed form
solution of the value of a snowball currency option. I analyze the payoff structure of a snowball
currency option and derive an upper and a lower boundaries of the value of it in a simplified
model. Furthermore, I derive a pricing formula using integral in the simplified model.

1. INTRODUCTION

Exporters usually use currency options to hedge against the risk of appreciation of the do-
mestic currency. Firms in Korea had not expected for the KRW/USD exchange rate to rise
before 2008 in which a financial crisis occurred Hence some firms, in particular exporters in
Korea over-hedged their positions or speculated using currency options with the belief that
KRW/USD will not rise. Consequently they suffered a large amount of loss by a steep rise of
KRW/USD exchange rate in 2008. KIKO(Knock-In-Knock-Out) option is a popular example
of such a currency option which was traded in the over-the-counter market in Korea. KIKO
option has often been analyzed for example in Han [2] and Kim [4]. In this paper, I introduce
another derivative on USD called “Snowball Currency Option” or “USDKRW Snowball Ex-
tendible At Expiry KO” which was traded once in the over-the-counter market in Korea and
caused a large amount of loss to the firm who bought it. A snowball currency option consists
of a series of maturities the payoffs at which are like those of a long position in a put option
and two short position in an otherwise identical call. The strike price at each maturity depends
on the exchange rate and the previous strike price so that the strike prices are random and path-
dependent, which makes it difficult to find a closed form solution of the value of a snowball
currency option. I analyze the payoff structure of the snowball currency option and derive an
upper and a lower boundaries of the value of it in a simplified model. Furthermore, I derive
a pricing formula using integral in the simplified model. An integral form solution provide an
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easier way to find Greeks every time in the life of the snowball currency option than that of
Monte Carlo method. Hence an integral form solution makes it easier to find hedge positions
than that of Monte Carlo method.

The article proceeds as follows. Section 2 explain the structure of a snowball currency
option. Section 3 analyze a snowball currency option in a simplified framework, in particular
find upper and lower boundaries of it. Section 4 provides a pricing formula and Greeks using
integrals and Section 5 concludes.

2. THE STRUCTURE OF A SNOWBALL CURRENCY OPTION

In this section I explain the structure of a snowball currency option. The underlying asset
of a snowball currency option is a foreign currency, say USD. There are basic maturities t1 <
t2 < ... < tN satisfying τ := t1 = t2− t1 = ... = tN − tN−1. The Payoff Gn at maturity tn is
the same as that of a long position in a put option and two short position in a call option with
the same strike price Kn for n = 1, ., N . There is a constant Knock-out barrier B from the
second maturity so that if the exchange rate Stn is less than B at maturity tn, then the payoff is
zero for n = 2, ..., N . Hence the payoffs at the basic maturities are

G1 = (K1 − St1)
+ − 2(St1 −K1)

+

and
Gn = [(Kn − Stn)

+ − 2(Stn −Kn)
+]1{Stn≥B} for n = 2, ..., N,

where Stn is the exchange rate denoting the amount of KRW corresponding 1 USD at maturity
tn. Until now the payoff structure of a snowball currency option is similar to that of KIKO.
However the payoff structure of a snowball currency option has a particular aspect in that its
strike prices are random and path dependent. The strike price K1 at the first maturity is a
deterministic constant but the other strike prices evolve according to

Kn =
(
min[Kn−1 +A− Stn ,K

max]
)+

, n = 2, ., N

where A and Kmax(cap price) are some constants satisfying 0 < A < Kmax, K1 ≤ Kmax,
and K1 + A − Kmax > 0. Since the payoff Gn at maturity tn is the same as that of a long
position in a put option and two short position in a call option with the same strike price Kn,
it is decreasing in Stn for a fixed Kn and increasing in Kn if for a fixed Stn . However Kn is
a decreasing function of Stn and an increasing function of Kn−1 which is again a decreasing
function of Stn−1 an increasing function of Kn−2 and so on. Furthermore if Stn−1 is low(resp.
high), then Stn tends to be low(resp. high). Because of such recursive structure of the payoffs
the snowball currency option a high tail risk. The possibility of extreme loss or profit is large.
Profit or loss tends to increase like a snowball. For an easily illustration of high tail risk due
to the recursive payoff structure, suppose Stn−1 is high, then Kn−1 tends to be low. Therefore
Gn−1 is low by high Stn−1 and additionally by low Kn−1. Since Stn−1 is high, Stn tends to
be high. Kn tend to be low by high Stn and additionally by low Kn−1 Therefore Gn is low by
high Stn and additionally by low Kn. The above argument can be summarized as the following
equations.
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Stn−1 ↑⇒ Stn−1 ↑
Kn−1 ↓

}
⇒ Gn−1 �,

Stn−1 ↑
Kn−1 ↓

}
⇒ Stn ↑

Kn−1 ↓

}
⇒ Kn �,

and
Stn ↑
Kn �

}
⇒ Gn ↓↓↓ .

Therefore
Stn−1 ↑⇒ Gn−1 �, Gn ↓↓↓, and so on.

The above argument is vice versa but the payoff structure is not symmetric since the strike
prices have an upper bound Kmax which makes the profit limited while the loss is unlimited.
Another feature of a snowball currency option is that there can be an extension event. If there
is a n such that Stn is larger than the extension barrier D > Kmax for n = 1, ..., N , then the
contract extends with more maturities tN+1, tN+2, ..., t2N such that tN < tN+1 < tN+2 <
... < t2N and τ = tN+1 − tN = tN+2 − tN+1 = ... = t2N − t2N−1. The possibility of the
extension event tends to increase the possibility of a large amount of loss to the long position
of the snowball currency option since the extension event occurs when the exchange rate is
very high (larger than D), that is, when the long position has been suffering and have an high
possibility of a large amount of loss. Generally, it is impossible to find a closed form solution
like Black-Scholes formula for the price of the snowball currency option. The main difficulty
arises from randomness and path-dependency of the strike prices. Monte Carlo simulation can
be applied to get the price. However it can be applied with given parameters. Furthermore it
is difficult or requires high computational cost to find Greeks at every time in the life of the
snowball currency option by Monte Carlo simulation method. That is, it is difficult to find
hedge position by Monte Carlo simulation method. In this paper I will provide a semi-closed
form solution, i.e., an integral form solution which makes it easier to calculate hedge positions
of the snowball currency option.

3. ANALYSIS OF THE SNOWBALL CURRENCY OPTION IN A SIMPLIFIED MODEL

In this section I investigate a snowball currency option under a simplifying assumption that
B = 0 and D = ∞. That is, it is assumed that the knock out and extension event cannot occur.
In particular, I find an upper and a lower bounds of the price of the snowball currency option.
The exchange rate {St}t≥0 follows a geometric Brownian motion as in Garman and Kohlhagen
[1].

dSt = St(µ− rf )dt+ StσdWt with the current rate S0,

where {Wt}t≥0 is a Weiner process defined on the underlying probability space (Ω,F , P ) and
market parameters, r(domestic interest rate), rf (foreign interest rate), µ(drift parameter), and
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σ(volatility) are constants. Let (Ft)
∞
t=0 be the augmentation under P of the natural filtration

generated by the Weiner process {Wt}t≥0. Hence

dSt = St(r − rf )dt+ StσdW̃t, (3.1)

where {W̃t}t≥0 is a Weiner Process under the risk-neutral probability measure P̃ .
Kn is a decreasing function of Stn and an increasing function of Kn−1 as mentioned in

the previous section and is shown in the following equations and Figure 1. In figure 1, I let
Kmax = 1200 and A = 950

For n = 2, ..., N ,

Kn =
(
min[Kn−1 +A− Stn ,K

max]
)+

= min[(Kn−1 +A− Stn)
+,Kmax]

=

 Kmax if Stn ≤ Kn−1 +A−Kmax,
Kn−1 +A− Stn if Kn−1 +A−Kmax ≤ Stn ≤ Kn−1 +A,
0 if Stn ≥ Kn−1 +A.

(3.2)
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FIGURE 1. Kn as a function of Stn with various Kn−1’s.
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The payoff Gn at time tn can be written using Equation (3.2). For n = 2, ..., N ,

Gn = (Kn − Stn)
+ − 2(Stn −Kn)

+

=

{
Kn − Stn if Stn ≤ Kn,
−2(Stn −Kn) if Stn ≥ Kn,

=

{
Kn − Stn if Stn ≤ Kn−1+A

2 ,

−2(Stn −Kn) if Stn ≥ Kn−1+A
2 ,

=


Kmax − Stn if Stn ≤ Kn−1 +A−Kmax,

Kn−1 +A− 2Stn if Kn−1 +A−Kmax ≤ Stn ≤ Kn−1+A
2 ,

2(Kn−1 +A− 2Stn) if Kn−1+A
2 ≤ Stn ≤ Kn−1 +A,

−2Stn if Stn ≥ Kn−1 +A.

(3.3)

Note here that Kn−1+A
2 > Kn−1 +A−Kmax since Kmax ≥ Kn−1 and Kmax > A.

It is easily checked that Gn is increasing in Kn−1 and decreasing in Stn as is shown in Figure
2.
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FIGURE 2. Gn as a function of Stn with various Kn−1’s.

The pricing formula for plain vanilla European options on a foreign currency is well known
by Garman and Kohlhagen [1] and textbooks ,for example, J.C. Hull [3] or R.L. McDonald [5].
As explained in textbooks, it is identical to Merton’s formula for options on dividend-paying
stocks in Merton [6] with the dividend yield being replaced by the foreign interest rate. That
is,

C(S,K) = Se−rf τN(d1)−KerτN(d2),

P (S,K) = KerτN(−d2)− Se−rf τN(−d1)
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with

d1 := d1(S,K) =
ln(S/K) + (r − rf + σ2

2 )τ

σ
√
τ

and d2 := d2(S,K) = d1(S,K)− σ
√
τ ,

where C(S,K) and P (S,K) denote the prices of the European call and options respectively
on the foreign currency with the current exchange rate S, the strike price K, and maturity τ ,
and N(·) is the cumulative standard normal distribution function. Since K1 is a fixed constant,
the price for the payoff G1 is

Ẽ[e−rτG1] = P (S0,K1)− 2C(S0,K1) = e−rτK1 − e−rf τS0 − C(S0,K1), (3.4)

where Ẽ is the expectation operator under the risk-neutral probability measure P̃ and the sec-
ond equality comes from the put-call parity(See J.C. Hull [3] or R.L. McDonald [5]). The
payoff Gn in Equation (3.3) can be rewritten. For n = 2, ..., N ,

Gn =


2[Kn−1+A

2 − Stn ]− [(Kn−1 +A−Kmax)− Stn ] if Stn ≤ Kn−1 +A−Kmax,

2(Kn−1+A
2 − Stn) if Kn−1 +A−Kmax ≤ Stn ≤ Kn−1+A

2 ,

−4(Stn − Kn−1+A
2 ) if Kn−1+A

2 ≤ Stn ≤ Kn−1 +A,

−4(Stn − Kn−1+A
2 ) + 2[Stn − (Kn−1 +A)] if Stn ≥ Kn−1 +A.

(3.5)
It is easily observed by Equation (3.5) that the payoff Gn is the same as that of two long
and one short position on the put options with strike price Kn−1+A

2 and Kn−1 + A − Kmax

respectively, and four short and two long position on the call options with strike price Kn−1+A
2

and Kn−1 +A respectively. Here the payoff of the short position on the put option with strike
price Kn−1+A−Kmax is regarded as zero if Kn−1+A−Kmax ≤ 0. Therefore it holds that
for n = 2, ..., N ,

Ẽ[e−rτGn | Ftn−1 ]

= 2P (Stn−1 ,
Kn−1 +A

2
)− P (Stn−1 ,Kn−1 +A−Kmax)1{Kn−1+A−Kmax>0}

−4C(Stn−1 ,
Kn−1 +A

2
) + 2C(Stn−1 ,Kn−1 +A) (3.6)

Therefore, we have

Ẽ[e−rτG2 | Ft1 ] = 2P (St1 ,
K1 +A

2
)−P (St1 ,K1+A−Kmax)−4C(St1 ,

K1 +A

2
)+2C(St1 ,K1+A).

By the put-call parity,

2P (St1 ,
K1 +A

2
)− 2C(St1 ,

K1 +A

2
) = 2(e−rτ K1 +A

2
− e−rf τSt1).

Hence, we have

Ẽ[e−rτG2 | Ft1 ] = 2(e−rτ K1 +A

2
− e−rf τSt1)− P (St1 ,K1 +A−Kmax)

−2C(St1 ,
K1 +A

2
) + 2C(St1 ,K1 +A) (3.7)
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Since Gn is an increasing function of Kn−1 and Kn−1 ≤ Kmax, we have, for n = 2, ..., N ,

Ẽ[e−rτGn | Ftn−1 ] ≤ 2P (Stn−1 ,
Kmax +A

2
)−P (Stn−1 , A)−4C(Stn−1 ,

Kmax +A

2
)+2C(Stn−1 ,K

max+A)

Applying the put-call parity to this equation, we have, for n = 2, ..., N ,

Ẽ[e−rτGn | Ftn−1 ] ≤ 2(e−rτ K
max +A

2
− e−rf τStn−1)− P (Stn−1 , A)

−2C(Stn−1 ,
Kmax +A

2
) + 2C(Stn−1 ,K

max +A). (3.8)

By Equation (3.1), we have, for n = 2, ..., N ,

Stn−1 = S0e
(r−rf−σ2

2
)tn−1+σW̃tn−1 ,

and

Ẽ[Stn−1 ] = S0e
(r−rf )tn−1 = S0e

(r−rf )(n−1)τ , (3.9)

where W̃tn−1 is a normal random variable with mean 0 and variance tn−1 = (n−1)τ . Therefore
Stn−1 , for n = 2, ..., N , can be represented as

Stn−1 = S0e
(r−rf−σ2

2
)(n−1)τ+σ

√
(n−1)τZ , (3.10)

where Z is a standard normal random variable. Note that the price V0 at time 0 of the snowball
currency option is

V0 =

N∑
n=1

Ẽ[e−rtnGn]. (3.11)

However, by the tower property and using (3.7), (3.8), (3.9), and (3.10), we have

Ẽ[e−rt2G2] = e−rτ Ẽ[Ẽ[e−rτG2 | Ft1 ]]

= e−rτ
[
2(e−rτ K1 +A

2
− e−rf τS0e

(r−rf )τ )

−
∫ ∞

−∞
P (S0e

(r−rf−σ2

2
)τ+σ

√
τz,K1 +A−Kmax)ϕ(z)dz

−2

∫ ∞

−∞
C(S0e

(r−rf−σ2

2
)τ+σ

√
τz,

K1 +A

2
)ϕ(z)dz

+2

∫ ∞

−∞
C(S0e

(r−rf−σ2

2
)τ+σ

√
τz,K1 +A)ϕ(z)dz

]
, (3.12)
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and for n = 3, ..., N ,

Ẽ[e−rtnGn] = e−r(n−1)τ Ẽ[Ẽ[e−rτGn | Ftn−1 ]]

≤ e−r(n−1)τ
[
2(e−rτ K

max +A

2
− e−rf τS0e

(r−rf )(n−1)τ )

−
∫ ∞

−∞
P (S0e

(r−rf−σ2

2
)(n−1)τ+σ

√
(n−1)τz, A)ϕ(z)dz

−2

∫ ∞

−∞
C(S0e

(r−rf−σ2

2
)(n−1)τ+σ

√
(n−1)τz,

Kmax +A

2
)ϕ(z)dz

+2

∫ ∞

−∞
C(S0e

(r−rf−σ2

2
)(n−1)τ+σ

√
(n−1)τz,Kmax +A)ϕ(z)dz

]
,(3.13)

where ϕ(z) := 1√
2π
e−

z2

2 is the standard normal density. Therefore we get an upper bound Vub

of the price V0 of the snowball currency option by using (3.11), (3.4), (3.12), and (3.13). That
is,

Vub = e−rτK1 − e−rf τS0 − C(S0,K1)

+e−rτ
[
2(e−rτ K1 +A

2
− e−rf τS0e

(r−rf )τ )

−
∫ ∞

−∞
P (S0e

(r−rf−σ2

2
)τ+σ

√
τz,K1 +A−Kmax)ϕ(z)dz

−2

∫ ∞

−∞
C(S0e

(r−rf−σ2

2
)τ+σ

√
τz,

K1 +A

2
)ϕ(z)dz

+2

∫ ∞

−∞
C(S0e

(r−rf−σ2

2
)τ+σ

√
τz,K1 +A)ϕ(z)dz

]
+

N∑
n=3

e−r(n−1)τ
[
2(e−rτ K

max +A

2
− e−rf τS0e

(r−rf )(n−1)τ )

−
∫ ∞

−∞
P (S0e

(r−rf−σ2

2
)(n−1)τ+σ

√
(n−1)τz, A)ϕ(z)dz

−2

∫ ∞

−∞
C(S0e

(r−rf−σ2

2
)(n−1)τ+σ

√
(n−1)τz,

Kmax +A

2
)ϕ(z)dz

+2

∫ ∞

−∞
C(S0e

(r−rf−σ2

2
)(n−1)τ+σ

√
(n−1)τz,Kmax +A)ϕ(z)dz

]
. (3.14)

Since Gn is an increasing function of Kn−1 and Kn−1 ≥ 0, we have, for n = 2, ..., N ,

Ẽ[e−rτGn | Ftn−1 ] ≥ 2P (Stn−1 ,
A

2
)− 4C(Stn−1 ,

A

2
) + 2C(Stn−1 , A)
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Applying the put-call parity to this equation, we have, for n = 2, ..., N ,

Ẽ[e−rτGn | Ftn−1 ] ≥ 2(e−rτ A

2
− e−rf τStn−1)− 2C(Stn−1 ,

A

2
) + 2C(Stn−1 , A).

Similarly to (3.14), we get a lower bound Vlb of the price V0 of the snowball currency option:

Vlb = e−rτK1 − e−rf τS0 − C(S0,K1)

+e−rτ
[
2(e−rτ K1 +A

2
− e−rf τS0e

(r−rf )τ )

−
∫ ∞

−∞
P (S0e

(r−rf−σ2

2
)τ+σ

√
τz,K1 +A−Kmax)ϕ(z)dz

−2

∫ ∞

−∞
C(S0e

(r−rf−σ2

2
)τ+σ

√
τz,

K1 +A

2
)ϕ(z)dz

+2

∫ ∞

−∞
C(S0e

(r−rf−σ2

2
)τ+σ

√
τz,K1 +A)ϕ(z)dz

]
+

N∑
n=3

e−r(n−1)τ
[
2(e−rτ A

2
− e−rf τS0e

(r−rf )(n−1)τ )

−2

∫ ∞

−∞
C(S0e

(r−rf−σ2

2
)(n−1)τ+σ

√
(n−1)τz,

A

2
)ϕ(z)dz

+2

∫ ∞

−∞
C(S0e

(r−rf−σ2

2
)(n−1)τ+σ

√
(n−1)τz, A)ϕ(z)dz

]
.

4. A PRICING FORMULA USING INTEGRAL IN A SIMPLIFIED MODEL

As in the previous section, I assume that B = 0 and D = ∞. Using arguments similar to the
previous section, we can find an integral form of the price V0 of a snowball currency option. I
focus on the case where N = 2 for a simple illustration.1 In this case, using (3.4) and (3.12),
we get

V0 = e−rτK1 − e−rf τS0 − C(S0,K1)

+e−rτ
[
2(e−rτ K1 +A

2
− e−rf τS0e

(r−rf )τ )

−
∫ ∞

−∞
P (S0e

(r−rf−σ2

2
)τ+σ

√
τz,K1 +A−Kmax)ϕ(z)dz

−2

∫ ∞

−∞
C(S0e

(r−rf−σ2

2
)τ+σ

√
τz,

K1 +A

2
)ϕ(z)dz

+2

∫ ∞

−∞
C(S0e

(r−rf−σ2

2
)τ+σ

√
τz,K1 +A)ϕ(z)dz

]
.

1An integral form solution in the case where N ≥ 3 can be found using similar arguments in the previous
section. The form is more complex since the backward induction needs more steps.
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The Greek letters can be calculated using this pricing formula. For example, I will find the
formula of delta(∆). As is shown in many textbooks(for example,J.C. Hull [3]), we have

∂C(S,K)

∂S
= e−rf τN(d1),

∂P (S,K)

∂S
= e−rf τ [N(d1)− 1],

where

d1 := d1(S,K) =
ln(S/K) + (r − rf + σ2

2 )τ

σ
√
τ

and d2 := d2(S,K) = d1(S,K)− σ
√
τ .

Therefore, delta(∆) of the snowball currency option becomes

∆ =
∂V0

∂S0

= −e−rf τ − e−rf τN(d1(S0,K1))

+e−rτ
[
− 2e−rf τe(r−rf )τ

−
∫ ∞

−∞
e−rf τ

[
N
(
d1(S0e

(r−rf−σ2

2
)τ+σ

√
τz,K1 +A−Kmax)

)
− 1

]
e(r−rf−σ2

2
)τ+σ

√
τzϕ(z)dz

−2

∫ ∞

−∞
e−rf τN

(
d1(S0e

(r−rf−σ2

2
)τ+σ

√
τz,

K1 +A

2
)
)
e(r−rf−σ2

2
)τ+σ

√
τzϕ(z)dz

+2

∫ ∞

−∞
e−rf τN

(
d1(S0e

(r−rf−σ2

2
)τ+σ

√
τz,K1 +A)

)
e(r−rf−σ2

2
)τ+σ

√
τzϕ(z)dz

]
.

Note that the pricing formula can be found for the case where t1 ̸= τ = t2 − t1 in a similar
way. Therefore, delta(∆) of the snowball currency option can be found dynamically, i.e., at
every time t such that 0 ≤ t ≤ t2, which is very difficult in Monte Carlo method. That is, an
integral form solution makes it easier to do delta hedging than that of Monte Carlo method.

5. CONCLUSION

I have introduced a derivative, a snowball currency option, which was once traded in the
over-the-counter market in Korea. I have analyzed the payoff structure. I have found an upper
and a lower boundary of the snowball currency option under a simplifying assumption. I have
also provided an integral form of solution in the simplified model, which makes it easier to find
Greeks dynamically than that of Monte Carlo method.
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