References
- T. Achdou, O. Pironneau. Computational methods for option pricing. SIAM Philadelphia, 2005.
- P. Boyle. A lattice framework for option pricing with two state variables. Journal of Financial and Quantitative Analysis, 23(1):1-12, 1988. https://doi.org/10.2307/2331019
- P. Boyle, J. Evnine, and S. Gibbs. Numerical evaluation of multivariate contingent claims. The Review of Financial Studies, 2(2):241-250, 1989. https://doi.org/10.1093/rfs/2.2.241
- P. Boyle, and S. H. Lau. Bumping up against the barrier with the binomial method. Journal of Derivatives, 1:6-14, 1994.
- M. Broadie and J. Detemple. American option valuation: new bounds, approximations, and a comparison of existing methods. Review of Financial Studies, 9:1211-1250, 1996. https://doi.org/10.1093/rfs/9.4.1211
- T. H. F. Cheuk and T. C. F. Vorst. Complex barrier options. Journal of Derivatives, 4:8-22, 1996.
- J. Cox, S. Ross, and M. Rubinstein. Option pricing: A simplified approach. Journal of Financial Economics, 7:229-263, 1979.
- E. Derman, I. Kani, D. Ergener and I. Bardhan. Enhanced Numerical Methods for Options with Barriers. Financial Analysts Journal, 51(6):65-74, 1995. https://doi.org/10.2469/faj.v51.n6.1951
- S. Figlewski and B. Gao. The adaptive mesh model: a new approach to efficient option pricing. Journal of Financial Economics, 53:313-351, 1999.
- M. Gaudenzi and M. A. Lepellere. Pricing and hedging American barrier options by a modified binomial method. International Journal of Theoretical and Applied Finance, 9(4):533-553, 2006. https://doi.org/10.1142/S0219024906003664
- M. Gaudenzi and F. Pressacco. An efficient binomial method for pricing american options. Decisions in Economics and finance, 26:1-17, 2003.
- E. G. Haug. The complete guide to option pricing formulas. McGraw-Hill, 1997.
- D.J. Higham. An introduction to financial option valuation. Cambridge University Press, 2004.
- B. Kamrad and P. Ritchken. Multinomial approximating models for options with k state variables. Management science, 37(12), 1991.
- Y. K. Kwok. Mathematical models of financial derivatives. Springer-Verlag, Singapore, 1998.
- Y. D. Lyuu. Financial Engineering and Computation. Cambridge, 2002.
- B. Oksendal. Stochastic differential equations. Springer, Berlin, 1998.
- E. Reimer and M. Rubinstein. Unscrambling the binary code. Risk Magazine, 4, 1991.
- P. Ritchken. On pricing barrier options. Journal of Derivatives, 3:19-28, 1995.
- P.Wilmott, J. Dewynne, S. Howison. Option Pricing: Mathematical Models and Computation. Oxford Financial Press, 1993.
Cited by
- AN ADAPTIVE MULTIGRID TECHNIQUE FOR OPTION PRICING UNDER THE BLACK-SCHOLES MODEL vol.17, pp.4, 2011, https://doi.org/10.12941/jksiam.2013.17.295