DOI QR코드

DOI QR Code

The effect of erbium-doped: yttrium, aluminium and garnet laser irradiation on the surface microstructure and roughness of double acid-etched implants

  • Kim, Ji-Hyun (Department of Periodontology, Kyung Hee University School of Dentistry) ;
  • Herr, Yeek (Department of Periodontology, Kyung Hee University School of Dentistry) ;
  • Chung, Jong-Hyuk (Department of Periodontology, Kyung Hee University School of Dentistry) ;
  • Shin, Seung-Il (Department of Periodontology, Kyung Hee University School of Dentistry) ;
  • Kwon, Young-Hyuk (Department of Periodontology, Kyung Hee University School of Dentistry)
  • Received : 2011.07.24
  • Accepted : 2011.09.17
  • Published : 2011.10.31

Abstract

Purpose: One of the most frequent complications related to dental implants is peri-implantitis, and the characteristics of implant surfaces are closely related to the progression and resolution of inflammation. Therefore, a technical modality that can effectively detoxify the implant surface without modification to the surface is needed. The purpose of this study was to evaluate the effect of erbium-doped: yttrium, aluminium and garnet (Er:YAG) laser irradiation on the microstructural changes in double acid-etched implant surfaces according to the laser energy and the application duration. Methods: The implant surface was irradiated using an Er:YAG laser with different application energy levels (100 mJ/pulse, 140 mJ/pulse, and 180 mJ/pulse) and time periods (1 minute, 1.5 minutes, and 2 minutes). We then examined the change in surface roughness value and microstructure. Results: In a scanning electron microscopy evaluation, the double acid-etched implant surface was not altered by Er:YAG laser irradiation under the condition of 100 mJ/pulse at 10 Hz for any of the irradiation times. However, we investigated the reduced sharpness of the specific ridge microstructure that resulted under the 140 mJ/pulse and 180 mJ/pulse conditions. The reduction in sharpness became more severe as laser energy and application duration increased. In the roughness measurement, the double acid-etched implants showed a low roughness value on the valley area before the laser irradiation. Under all experimental conditions, Er:YAG laser irradiation led to a minor decrease in surface roughness, which was not statistically significant. Conclusions: The recommended application settings for Er:YAG laser irradiation on double acid-etched implant surface is less than a 100 mJ/pulse at 10 Hz, and for less than two minutes in order to detoxify the implant surface without causing surface modification.

Keywords

References

  1. Albrektsson TO, Johansson CB, Sennerby L. Biological aspects of implant dentistry: osseointegration. Periodontol 2000 1994;4:58-73. https://doi.org/10.1111/j.1600-0757.1994.tb00006.x
  2. Mombelli A, Lang NP. The diagnosis and treatment of peri-implantitis. Periodontol 2000 1998;17:63-76. https://doi.org/10.1111/j.1600-0757.1998.tb00124.x
  3. Quirynen M, Naert I, van Steenberghe D, Nys L. A study of 589 consecutive implants supporting complete fixed prostheses. Part I: Periodontal aspects. J Prosthet Dent 1992;68:655-63. https://doi.org/10.1016/0022-3913(92)90383-L
  4. Isidor F. Loss of osseointegration caused by occlusal load of oral implants. A clinical and radiographic study in monkeys. Clin Oral Implants Res 1996;7:143-52. https://doi.org/10.1034/j.1600-0501.1996.070208.x
  5. Pongnarisorn NJ, Gemmell E, Tan AE, Henry PJ, Marshall RI, Seymour GJ. Inflammation associated with implants with different surface types. Clin Oral Implants Res 2007;18:114-25.
  6. Meffert RM, Langer B, Fritz ME. Dental implants: a review. J Periodontol 1992;63:859-70. https://doi.org/10.1902/jop.1992.63.11.859
  7. Mombelli A. Microbiology and antimicrobial therapy of peri-implantitis. Periodontol 2000 2002;28:177-89. https://doi.org/10.1034/j.1600-0757.2002.280107.x
  8. Krozer A, Hall J, Ericsson I. Chemical treatment of machined titanium surfaces. An in vitro study. Clin Oral Implants Res 1999;10:204-11. https://doi.org/10.1034/j.1600-0501.1999.100303.x
  9. Schwarz F, Putz N, Georg T, Reich E. Effect of an Er:YAG laser on periodontally involved root surfaces: an in vivo and in vitro SEM comparison. Lasers Surg Med 2001;29:328-35. https://doi.org/10.1002/lsm.1125
  10. Schwarz F, Sculean A, Berakdar M, Szathmari L, Georg T, Becker J. In vivo and in vitro effects of an Er:YAG laser, a GaAlAs diode laser, and scaling and root planing on periodontally diseased root surfaces: a comparative histologic study. Lasers Surg Med 2003;32:359-66. https://doi.org/10.1002/lsm.10179
  11. Ando Y, Aoki A, Watanabe H, Ishikawa I. Bactericidal effect of erbium YAG laser on periodontopathic bacteria. Lasers Surg Med 1996;19:190-200. https://doi.org/10.1002/(SICI)1096-9101(1996)19:2<190::AID-LSM11>3.0.CO;2-B
  12. Yamaguchi H, Kobayashi K, Osada R, Sakuraba E, Nomura T, Arai T, et al. Effects of irradiation of an erbium:YAG laser on root surfaces. J Periodontol 1997;68:1151-5. https://doi.org/10.1902/jop.1997.68.12.1151
  13. Matsuyama T, Aoki A, Oda S, Yoneyama T, Ishikawa I. Effects of the Er:YAG laser irradiation on titanium implant materials and contaminated implant abutment surfaces. J Clin Laser Med Surg 2003;21:7-17. https://doi.org/10.1089/10445470360516680
  14. Albrektsson T, Wennerberg A. Oral implant surfaces: Part 1--review focusing on topographic and chemical properties of different surfaces and in vivo responses to them. Int J Prosthodont 2004;17:536-43.
  15. De Leonardis D, Garg AK, Pecora GE. Osseointegration of rough acid-etched titanium implants: 5-year follow-up of 100 minimatic implants. Int J Oral Maxillofac Implants 1999;14:384-91.
  16. Wennerberg A, Ektessabi A, Albrektsson T, Johansson C, Andersson B. A 1-year follow-up of implants of differing surface roughness placed in rabbit bone. Int J Oral Maxillofac Implants 1997;12:486-94.
  17. Lazzara RJ, Testori T, Trisi P, Porter SS, Weinstein RL. A human histologic analysis of osseotite and machined surfaces using implants with 2 opposing surfaces. Int J Periodontics Restorative Dent 1999;19:117-29.
  18. London RM, Roberts FA, Baker DA, Rohrer MD, O'Neal RB. Histologic comparison of a thermal dual-etched implant surface to machined, TPS, and HA surfaces: bone contact in vivo in rabbits. Int J Oral Maxillofac Implants 2002;17:369-76.
  19. Park JY, Davies JE. Red blood cell and platelet interactions with titanium implant surfaces. Clin Oral Implants Res 2000;11:530-9. https://doi.org/10.1034/j.1600-0501.2000.011006530.x
  20. Bowers KT, Keller JC, Randolph BA, Wick DG, Michaels CM. Optimization of surface micromorphology for enhanced osteoblast responses in vitro. Int J Oral Maxillofac Implants 1992;7:302-10.
  21. Ivanoff CJ, Widmark G, Johansson C, Wennerberg A. Histologic evaluation of bone response to oxidized and turned titanium micro-implants in human jawbone. Int J Oral Maxillofac Implants 2003;18:341-8.
  22. Hsu SH, Liu BS, Lin WH, Chiang HC, Huang SC, Cheng SS. Characterization and biocompatibility of a titanium dental implant with a laser irradiated and dual-acid etched surface. Biomed Mater Eng 2007;17:53-68.
  23. Trisi P, Rao W, Rebaudi A. A histometric comparison of smooth and rough titanium implants in human low-density jawbone. Int J Oral Maxillofac Implants 1999;14:689-98.
  24. Grossner-Schreiber B, Teichmann J, Hannig M, Dorfer C, Wenderoth DF, Ott SJ. Modified implant surfaces show different biofilm compositions under in vivo conditions. Clin Oral Implants Res 2009;20:817-26. https://doi.org/10.1111/j.1600-0501.2009.01729.x
  25. Drake DR, Paul J, Keller JC. Primary bacterial colonization of implant surfaces. Int J Oral Maxillofac Implants 1999;14:226-32.
  26. Renvert S, Roos-Jansaker AM, Claffey N. Non-surgical treatment of peri-implant mucositis and peri-implantitis: a literature review. J Clin Periodontol 2008;35(8 Suppl):305-15.
  27. Maximo MB, de Mendonca AC, Renata Santos V, Figueiredo LC, Feres M, Duarte PM. Short-term clinical and microbiological evaluations of peri-implant diseases before and after mechanical anti-infective therapies. Clin Oral Implants Res 2009;20:99-108. https://doi.org/10.1111/j.1600-0501.2008.01618.x
  28. Kreisler M, Gotz H, Duschner H. Effect of Nd:YAG, Ho: YAG, Er:YAG, CO2, and GaAIAs laser irradiation on surface properties of endosseous dental implants. Int J Oral Maxillofac Implants 2002;17:202-11.
  29. Kreisler M, Kohnen W, Marinello C, Gotz H, Duschner H, Jansen B, et al. Bactericidal effect of the Er:YAG laser on dental implant surfaces: an in vitro study. J Periodontol 2002;73:1292-8. https://doi.org/10.1902/jop.2002.73.11.1292
  30. Folwaczny M, Mehl A, Aggstaller H, Hickel R. Antimicrobial effects of 2.94 microm Er:YAG laser radiation on root surfaces: an in vitro study. J Clin Periodontol 2002;29:73-8. https://doi.org/10.1034/j.1600-051x.2002.290111.x
  31. Friedmann A, Antic L, Bernimoulin JP, Purucker P. In vitro attachment of osteoblasts on contaminated rough titanium surfaces treated by Er:YAG laser. J Biomed Mater Res A 2006;79:53-60.
  32. Schwarz F, Aoki A, Sculean A, Georg T, Scherbaum W, Becker J. In vivo effects of an Er:YAG laser, an ultrasonic system and scaling and root planing on the biocompatibility of periodontally diseased root surfaces in cultures of human PDL fibroblasts. Lasers Surg Med 2003;33:140-7. https://doi.org/10.1002/lsm.10201
  33. Kreisler M, Kohnen W, Christoffers AB, Gotz H, Jansen B, Duschner H, et al. In vitro evaluation of the biocompatibility of contaminated implant surfaces treated with an Er: YAG laser and an air powder system. Clin Oral Implants Res 2005;16:36-43.
  34. Abrahamsson I, Zitzmann NU, Berglundh T, Wennerberg A, Lindhe J. Bone and soft tissue integration to titanium implants with different surface topography: an experimental study in the dog. Int J Oral Maxillofac Implants 2001;16:323-32.
  35. Sul YT, Johansson C, Albrektsson T. Which surface properties enhance bone response to implants? Comparison of oxidized magnesium, TiUnite, and Osseotite implant surfaces. Int J Prosthodont 2006;19:319-28.
  36. Sul YT, Byon E, Wennerberg A. Surface characteristics of electrochemically oxidized implants and acid-etched implants: surface chemistry, morphology, pore configurations, oxide thickness, crystal structure, and roughness. Int J Oral Maxillofac Implants 2008;23:631-40.
  37. Lang NP, Jepsen S; Working Group 4. Implant surfaces and design (Working Group 4). Clin Oral Implants Res 2009;20(Suppl 4):228-31. https://doi.org/10.1111/j.1600-0501.2009.01771.x
  38. Wennerberg A, Albrektsson T, Andersson B. Bone tissue response to commercially pure titanium implants blasted with fine and coarse particles of aluminum oxide. Int J Oral Maxillofac Implants 1996;11:38-45.
  39. Jeong DM, Park JB, Kwon YH, Herr Y, Chung JH. The influence of tetracycline-HCl for micromorphology of thermal dual acid etched surface implants. J Korean Acad Periodontol 2007;37:265-75. https://doi.org/10.5051/jkape.2007.37.2.265

Cited by

  1. Decontamination of dental implant surface in peri-implantitis treatment: A literature review vol.18, pp.6, 2011, https://doi.org/10.4317/medoral.19420
  2. Clinical Outcomes of Using Lasers for Peri-Implantitis Surface Detoxification: A Systematic Review and Meta-Analysis vol.85, pp.9, 2011, https://doi.org/10.1902/jop.2014.130620
  3. Effects of Er:YAG laser on bacteria associated with titanium surfaces and cellular response in vitro vol.29, pp.4, 2011, https://doi.org/10.1007/s10103-013-1303-8
  4. Instrumentation With Ultrasonic Scalers Facilitates Cleaning of the Sandblasted and Acid-Etched Titanium Implants vol.41, pp.4, 2015, https://doi.org/10.1563/aaid-joi-d-13-00078
  5. Antibacterial effect of Er:YAG laser in the treatment of peri-implantitis and their effect on implant surfaces: a literature review vol.2, pp.4, 2011, https://doi.org/10.1007/s41547-018-0043-2
  6. Decontamination of Dental Implant Surfaces by the Er:YAG Laser Beam: A Comparative in Vitro Study of Various Protocols vol.6, pp.4, 2011, https://doi.org/10.3390/dj6040066
  7. Different laser approaches in treatment of peri-implantitis: a review vol.3, pp.2, 2019, https://doi.org/10.1007/s41547-019-00063-w
  8. Surface roughness alterations of zirconia implants after Er:YAG laser irradiation: a preliminary study vol.3, pp.4, 2011, https://doi.org/10.1007/s41547-019-00078-3
  9. Physicochemical Changes of Contaminated Titanium Discs Treated With Erbium-Doped Yttrium Aluminum Garnet (Er:YAG) Laser Irradiation or Air-Flow Abrasion: An In Vitro Study vol.12, pp.1, 2021, https://doi.org/10.34172/jlms.2021.67
  10. Efficacy of titanium brush, 915 nm diode laser, citric acid for eradication of Staphylococcus aureus from implant surfaces vol.21, pp.1, 2011, https://doi.org/10.1186/s12903-021-01997-z