DOI QR코드

DOI QR Code

Sarijang Enhances Maturation of Murine Bone Marrow-Derived Dendritic Cells

사리장 처리에 의한 수지상세포의 성숙 유도

  • Jin, Cheng-Yun (Department of Biomaterial Control (BK21 Program), Graduate School) ;
  • Han, Min-Ho (Department of Biomaterial Control (BK21 Program), Graduate School) ;
  • Park, Cheol (Department of Biochemistry, College of Oriental Medicine) ;
  • Hwang, Hye-Jin (Department of Food and Nutrition, College of Human Ecology) ;
  • Choi, Eun-A (InSan BamBoo Salt Inc.) ;
  • Choi, Yung-Hyun (Department of Biomaterial Control (BK21 Program), Graduate School)
  • 김성윤 (동의대학교 대학원 바이오물질제어학과(BK21 Program)) ;
  • 한민호 (동의대학교 대학원 바이오물질제어학과(BK21 Program)) ;
  • 박철 (한의과대학 생화학교실) ;
  • 황혜진 (생활과학대학 식품영양학과 및 블루바이오소재개발센터) ;
  • 최은아 ((주)인산죽염촌) ;
  • 최영현 (동의대학교 대학원 바이오물질제어학과(BK21 Program))
  • Received : 2011.11.10
  • Accepted : 2011.12.06
  • Published : 2011.12.31

Abstract

Dendritic cells (DCs) are professional antigen-presenting cells playing key roles in immune sentinels as initiators of T-cell responses against microbial pathogens and tumors. Sarijang, a folk sauce containing extracts of Rhynchosia nulubilis, Ulmus davidiana roots, Allium sativum, and Rhus Verniaiflura bark, has been used as a nonspecific immunostimulant for cancer patients. However, little is known about its immunomodulating effects or their mechanisms. In this study, we investigated whether sarijang induces phenotypic and functional maturation of DCs. For this study, murine bone marrow-derived myeloid DCs were cultured in the presence of interleukin-4 (IL-4) and granulocyte-macrophage colony stimulating factor (GM-CSF), and the generated immature DCs were stimulated with sarijang or lipopolysaccharide (LPS). Our data indicated that sarijang significantly enhanced the expression of co-stimulatory molecules (CD80 and CD86) as well as major histocompatibility complex (MHC) II, as did LPS. The results provide new insight into the immunopharmacology of sarijang and suggest a novel approach to the manipulation of DC for therapeutic application.

수지상세포(DCs)는 항원을 섭취하여 말초조직에서 lymphoid 기관으로 이동하는 특화된 항원제시세포(APCs)로서 미성숙 T 세포를 자극함으로서 일차적 면역반응에 중심적인 역할을 하기 때문에 DC의 성숙에 대한 조절은 면역학적 치료 접근에 매우 중요한 부분이다. 본 연구에서는 서목태 발효 산물이 주 원료인 사리장에 의한 DC의 성숙 유도 가능성을 조사하기 위해 GM-CSF와 IL-4를 이용하여 골수 유래 수지상세포(BMDCs)를 대상으로 DC의 성숙에 관여하는 주요 인자들의 발현에 미치는 영향을 LPS 처리군과 비교하였다. 사리장은 처리농도 의존적으로 표면 수용체인 CD80 및 CD86의 발현을 증가시켰으나, CD80 발현 증가에 더 유의적이었다. 또한 사리장은 MHC I 보다 MHC II의 발현을 현저하게 증가시켰으며, 이러한 결과는 사리장이 DC의 성숙을 위한 적용에 매우 유의적으로 사용될 수 있을 가능성과 면역활성 효능을 가질 수 있음을 의미하는 것이다.

Keywords

References

  1. Azuma, M., D. Ito, H. Yagita, K. Okumura, J. H. Phillips, L. L. Lanier, and C. Somoza. 1993. B70 antigen is a second ligand for CTLA-4 and CD28. Nature 366, 76-79. https://doi.org/10.1038/366076a0
  2. Banchereau, J. and R. M. Steinman. 1998. Dendritic cells and the control of immunity. Nature 392, 245-252. https://doi.org/10.1038/32588
  3. Bayry, J., M. Thirion, S. Delignat, N. Misra, S. Lacroix-Desmazes, M. D. Kazatchkine, and S. V. Kaveri. 2004. Dendritic cells and autoimmunity. Autoimmun. Rev. 3, 183-187. https://doi.org/10.1016/S1568-9972(03)00104-6
  4. Cools, N., P. Ponsaerts, V. F. Van Tendeloo, and Z. N. Berneman. 2007. Balancing between immunity and tolerance: an interplay between dendritic cells, regulatory T cells, and effector T cells. J. Leukoc. Biol. 82, 1365-1374. https://doi.org/10.1189/jlb.0307166
  5. Crowley, M., K. Inaba, M. Witmer-Pack, and R. M. Steinman. 1989. The cell surface of mouse dendritic cells: FACS analyses of dendritic cells from different tissues including thymus. Cell Immunol. 118, 108-125. https://doi.org/10.1016/0008-8749(89)90361-4
  6. Glimcher, L. H., T. Hamano, R. Asofsky, E. Herber-Katz, S. Hedrick, R. H. Schwartz, and W. E. Paul. 1982. I region-restricted antigen presentation by B cell-B lymphoma hybridomas. Nature 298, 283-284. https://doi.org/10.1038/298283a0
  7. Groenewegen, G., W. A. Buurman, and C. J. Van der Linden. 1985. Lymphokine dependence of in vivo expression of MHC class II antigens by endothelium. Nature 316, 361-363. https://doi.org/10.1038/316361a0
  8. Inaba, K., M. Inaba, N. Romani, H. Aya, M. Deguchi, S. Ikehara, S. Muramatsu, and R. M. Steinman. 1992. Generation of large numbers of dendritic cells from mouse bone marrow cultures supplemented with granulocyte/ macrophage colony-stimulating factor. J. Exp. Med. 176, 1693-1702. https://doi.org/10.1084/jem.176.6.1693
  9. Kyewski, B. A., C. G. Fathman, and R. V. Rouse. 1986. Intrathymic presentation of circulating non-MHC antigens by medullary dendritic cells. An antigen-dependent microenvironment for T cell differentiation. J. Exp. Med. 163, 231-246. https://doi.org/10.1084/jem.163.2.231
  10. Manni, M., R. D. Granstein, and G. Maestroni. 2011. $\beta$ 2-Adrenergic agonists bias TLR-2 and NOD2 activated dendritic cells towards inducing an IL-17 immune response. Cytokine 55, 380-386. https://doi.org/10.1016/j.cyto.2011.05.013
  11. McGehee, A. M., K. Strijbis, E. Guillen, T. Eng, O. Kirak, and H. L. Ploegh. 2011. Ubiquitin-dependent control of class II MHC localization is dispensable for antigen presentation and antibody production. PLoS One 6, e18817. https://doi.org/10.1371/journal.pone.0018817
  12. Menges, M., T. Baumeister, S. Rössner, P. Stoitzner, N. Romani, A. Gessner, and M. B. Lutz. 2004. IL-4 supports the generation of a dendritic cell subset from murine bone marrow with altered endocytosis capacity. J. Leukoc. Biol. 77, 535-543. https://doi.org/10.1189/jlb.0804473
  13. Mitra, R. S., T. A. Judge, F. O. Nestle, L. A. Turka, and B. J. Nickoloff. 1995. Psoriatic skin-derived dendritic cell function is inhibited by exogenous IL-10. Differential modulation of B7-1 (CD80) and B7-2 (CD86) expression. J. Immunol. 154, 2668-2677.
  14. Moretta, L., G. Ferlazzo, M. C. Mingari, G. Melioli, and A. Moretta. 2003. Human natural killer cell function and their interactions with dendritic cells. Vaccine 2, S38-42.
  15. Ramila, G. and P. Erb. 1983. Accessory cell-dependent selection of specific T-cell functions. Nature 304, 442-445. https://doi.org/10.1038/304442a0
  16. Thomas, R., K. P. MacDonald, A. R. Pettit, L. L. Cavanagh, J. Padmanabha, and S. Zehntner. 1999. Dendritic cells and the pathogenesis of rheumatoid arthritis. J. Leukoc. Biol. 66, 286-292.

Cited by

  1. Anti-hyperlipidemic activity ofRhynchosia nulubilisseeds pickled with brown rice vinegar in mice fed a high-fat diet vol.7, pp.6, 2013, https://doi.org/10.4162/nrp.2013.7.6.453