DOI QR코드

DOI QR Code

Isolation of Bacillus subtilis CK-2 Hydrolysing Various Organic Materials

다양한 유기물을 분해하는 Bacillus subtilis CK-2의 분리

  • Kim, Chul-Ho (Department of Phamaceutical Engineering, Gyeongnam National University of Science and Technology) ;
  • Lee, Sang-Hyup (Department of Phamaceutical Engineering, Gyeongnam National University of Science and Technology)
  • 김철호 (경남과학기술대학교 제약공학과) ;
  • 이상협 (경남과학기술대학교 제약공학과)
  • Received : 2011.09.29
  • Accepted : 2011.12.06
  • Published : 2011.12.31

Abstract

A bacterium hydrolysing various organic materials including cellulose, protein, starch and lipid was isolated. The isolate was identified as Bacillus subtilis, and named Bacillus subtilis CK-2 in this paper. This bacterium showed optimal growth at $40\sim45^{\circ}C$, pH 6~9, and 0~3% of NaCl. B. subtilis CK-2 seemed to synthesis highly active autolysin. The hydrolytic enzymes produced by B. subtilis CK-2 were primary enzymes because extracellular enzyme activities varied similarly to the growth curve. The hydrolytic enzymes seemed to be stable at basic pH conditions. From these results, B. subtilis CK-2 was found to bea useful bacterial agent for composting, or for use in feed-production waste in agriculture, fishery, forest materials, livestock farming, and food.

섬유소를 비롯한 단백질, 지질, 녹말을 분해할 수 있는 세균을 된장으로부터 분리하여 동정한 결과 Bacillus subtilis로 분류되었으며, Bacillus subtilis CK-2로 명명하였다. 분리균주는 $40\sim45^{\circ}C$의 비교적 넓은 온도 범위와 pH 6~9의 넓은 pH 범위, 그리고 NaCl 0~3% 범위에서 잘 자랐으며, 높은 자가분해효소 활성을 갖는 것을 알 수 있었다. B. subtilis CK-2가 분비하는 가수분해효소들은 대부분 세균의 생장과 거의 비례적으로 세포외 활성을 나타내는 1차 대사산물로 확인되었다. 이상의 결과로부터 B. subtilis CK-2는 농수임산물 폐기물이나 음식물 폐기물의 퇴비화, 사료 생산 등에 유용하게 이용될 수 있을 것으로 생각한다.

Keywords

References

  1. Ariffin, H., N. Abdullah, M. S. U. Kalsom, Y. Shirai, and M. A. Hassan. 2006. Production and characterisation of cellulase by Bacillus pumilus EB3. International J. Engineering and Technology 3, 47-53.
  2. Bailey, M. J., P. Biely, and K. Poutanen. 1992. Inter-laboratory testing of methods for assay of xylanase activity. J. Biotechnol. 23, 257-270. https://doi.org/10.1016/0168-1656(92)90074-J
  3. Bhat, M. K. and S. Bhat, 1997. Celllose degrading enzymes and their potential industrial applications. Biotechnology Advences 15, 583-620. https://doi.org/10.1016/S0734-9750(97)00006-2
  4. Coral, G., B. Arikan, M. N. Ünaldi, and H. Güvenmez. 2002. Some properties of crude carboxymethyl cellulase of Aspergillus niger Z10 wild-type strain. Turk J. Biol. 26, 209-213.
  5. Emtiazi, G. and I. Nahvi. 2004. Production of thermostable α-amylase and cellulase from Cellulomonas sp.. J. Microbiol. Biotechnol. 14, 1196-1199.
  6. Heck, J. X., P. F. Hertz, and M. A. Z. Ayub, 2002. Cellulase and xylanase production by isolated amazon Bacillus strains using soybean industrial residue based solid-state cultivation. Brazil. J. Microbiol. 33, 213-218. https://doi.org/10.1590/S1517-83822002000300005
  7. Ibrahim, A. S. S. and A. K. El-diwany. 2007. Isolation and identification of new cellulases producing thermophilic bacteria from an Egyptian hot spring and some properties of the crude enzyme. Aust. J. Basic & Appl. Sci. 1, 473-478.
  8. Igarashi, K., Y. Hatada, H. Hagihara, K. Saeki, M. U. T. Takaiwa, K. Arai, K. Ozaki, S. Kawai, T. Kobayashi, and S. Ito. 1998. Enzymatic properties of a novel liquefying α -amylase from an alkalophilic Bacillus isolated and entire nucleotide and ammino acid sequences. Appl. Environ. Microbiol. 64, 3282-3289.
  9. Janssen, P. H., K. Peek, H. W. Morgan. 1994. Effect of culture conditions on the production of a extracellular proteinase by Thermus sp. Rt41A. Appl. Microbiol. Biotechnol. 41, 400-406. https://doi.org/10.1007/BF00212249
  10. Johansson, T. and P. O. Nyman, 1993. Isoenzymes of lignin peroxidase and manganese peroxidase from the white-rot Basidiomycete. Arch. Biochem. Biophys. 300, 49-56. https://doi.org/10.1006/abbi.1993.1007
  11. Kim, C. H., M. H. Leam, and Y. K. Choi, 1997. Isolation of a bacterium that inhibits the growth of Anabaean cylindrica. The Journal of Microbiol. 35, 284-289.
  12. Katz, M. and E. T. Reese. 1968. Production of glucose by enzymatic hydrolysis of cellulose. Appl. Microbiol. 16, 419-420.
  13. Lee, H. S., Y. W. Ryu, and C. Kim, 1994. Hydrolysis of starch by $\alpha$-amylase and glucoamylase in supercritical carbon dioxide. J. Microbiol. Biotechnol. 4, 230-232.
  14. Masse, L., K. J. Kennedy, and S. P. Chou, 2001. The effect of an enzymatic pretreatment on the hydrolysis and size reduction of fat particales in slaughterhouse wastewater. J. Chem. Technol. Biotechnol. 76, 629-635. https://doi.org/10.1002/jctb.428
  15. Miller, G. L. 1959. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426-428. https://doi.org/10.1021/ac60147a030
  16. Nakasaki, K. and T. Akiyama. 1988. Effect of seeding on thermophilic composting of household organic waste. J. Ferment. Technol. 66, 37-42. https://doi.org/10.1016/0385-6380(88)90127-6
  17. Nascimento, W. C. A. and M. L. L. Martins. 2004. Production and properties of an extracellular protease from thermophilic Bacillus sp.. Braz. J. Microbiol. 35, 91-96. https://doi.org/10.1590/S1517-83822004000100015
  18. Robson, L. M. and G. H. Chambliss. 1989. Cellulases of bacterial origin enzyme. Microb. Technol. 11, 612-643.
  19. Rubin, B. and E. A. Dennis. 1997. Lipases: Part A. Biotechnology Methods in Enzymology, vol. 284. pp. 1-408, Academic Press, New York.
  20. Sigh, J., N. Batra, C. R. Sobti. 2001. Serine alkaline protease from a newly isolated Bacillus sp. SSR1. Proc. Biochem. 36, 781-785. https://doi.org/10.1016/S0032-9592(00)00275-2
  21. Takamoto, T., H. Shirasaka, H. Uyama, S. Kobayashi. 2001. Lipase-catalyzed hydrolytic degradation of polyurethane in organic solvent. Chem. Lett. 6, 492-493.
  22. Wood, T. M. and K. M. Bhat. 1988. Methods for measuring cellulose activities. Methods Enzymol. 160, 87-112. https://doi.org/10.1016/0076-6879(88)60109-1
  23. Yi, J. C., A. B. Sandra, and T. C. Shu, 1999. Production and distribution of endoglucanase, cellobiohydrolase, and $\beta$-glucosidase components of the cellulolytic system of Volvariella volvacea, the edible straw mushroom. Appl. Environ. Microbiol. 65, 553-559.

Cited by

  1. Physicochemical properties and microencapsulation process of rice fermented with Bacillus subtilis CBD2 vol.22, pp.2, 2015, https://doi.org/10.11002/kjfp.2015.22.2.225
  2. Amylase activity and characterization of Bacillus subtilis CBD2 isolated from Doenjang vol.21, pp.2, 2014, https://doi.org/10.11002/kjfp.2014.21.2.286
  3. Seaweed Fermentation and Probiotic Properties of Lactic Acid Bacteria Isolated from Korean Traditional Foods vol.45, pp.10, 2016, https://doi.org/10.3746/jkfn.2016.45.10.1481
  4. Food waste treatment using Bacillus species isolated from food wastes and production of air-dried Bacillus cell starters vol.23, pp.3, 2018, https://doi.org/10.4491/eer.2017.116