DOI QR코드

DOI QR Code

The Anti-Inflammatory Effects of Persicaria thunbergii Extracts on Lipopolysaccharide-Stimulated RAW264.7 Cells

Lipopolysaccharide로 처리 된 RAW264.7 세포에서 고마리 추출물의 항염증 효과

  • Kim, Sang-Bo (Department of Microbiology, College of Natural Sciences, Pukyong National University) ;
  • Seong, Yeong-Ae (Department of Microbiology, College of Natural Sciences, Pukyong National University) ;
  • Jang, Hee-Jae (Department of Chemistry, College of Natural Sciences, Changwon National University) ;
  • Kim, Gun-Do (Department of Microbiology, College of Natural Sciences, Pukyong National University)
  • Received : 2011.11.23
  • Accepted : 2011.12.08
  • Published : 2011.12.31

Abstract

In this study, we investigated the anti-inflammation effect of Persicaria thunbergii (P. thunbergii) on RAW 264.7 murine macrophage cells. The anti-inflammatory activity of P. thunbergii was determined by measuring expression of the LPS-induced inflammatory proteins, inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2) and nuclear factor-${\kappa}B$ (NF-${\kappa}B$), and the production of nitric oxide (NO) and prostaglandin $E_2$ ($PGE_2$). Methanol extract of P. thunbergii decreased the expression of iNOS, COX-2 and NF-${\kappa}B$, and increased the expression of HO-1 in LPS-stimulated RAW264.7 cells. Methanol extract was fractioned by n-butanol, hexane and ethyl acetate (EtOAc) and each fraction was tested for inhibitory effects on inflammation. Among the sequential solvent fractions, the EtOAc soluble fraction was investigated by the expression of prostaglandin $E_2$ ($PGE_2$), and showed decreasing form to the dose-dependent manner. EtOAc extract showed the most effective inhibitory activity of the expression of iNOS, COX-2 and NF-${\kappa}B$, and the production of NO. The study showed that P. thunbergii has anti-inflammatory activity through the decrease of NO and inhibition of iNOS, COX-2, $PGE_2$ and NF-${\kappa}B$ expression, and by the increase of HO-1 enzyme. This study needs for more investigation to find out the most effective single compound with anti-inflammatory activity.

본 연구는 고마리 추출물이 가지는 항염증 활성을 알아보기 위하여 쥐의 대식세포(RAW264.7 cell)에 Lipopolysaccharide (LPS)를 처리하여 염증반응을 유도하고 이때 발생되는 Nitric oxide (NO)의 생성 억제를 확인하였다. 또한 염증에서 중요하게 알려져 있는 Inducible nitric oxide synthase (iNOS), Cyclooxygenase-2 (COX-2), Nuclear factor-kappa B (NF-${\kappa}B$) 단백질들의 발현을 비교하였고, 추가적으로 NF-${\kappa}B$ 단백질의 핵 내부로의 이전 및 활성을 확인하였다. 메탄올 추출물은 NO 생성 및 iNOS, COX-2, NF-${\kappa}B$ 단백질의 발현을 억제하고, 세포를 보호하는 효과를 가지는 Heme oxygenase-1 (HO-1) 단백질의 발현을 증가시켰다. 위 결과를 바탕으로 하여 n-butanol, hexane, ethyl acetate 용매를 이용한 추가적인 분획을 실시하였다. 이들 분획 중 고마리의 ethyl acetate 추출물은 Prostaglandin $E_2$ ($PGE_2$), NO 생성을 억제 하였으며, iNOS, COX-2 단백질들의 발현을 감소, NF-${\kappa}B$의 핵 내부로의 이동을 억제하는 효과가 높다는 것을 확인하였다. 이러한 연구결과는 고마리 식물이 좋은 항염증 활성을 가지고 있음을 나타내며, 지속적인 분획으로 고마리 식물이 가지는 항염증 활성 물질을 선별하여 그 작용기작을 규명하는 연구가 필요하다.

Keywords

References

  1. Akira, S. and H. Hemmi. 2003. Recognition of pathogen- associated molecular patterns by TLR family. Immunol. Lett. 85, 85-95. https://doi.org/10.1016/S0165-2478(02)00228-6
  2. Araki, E., C. Forster, J. M. Dubinsky, M. E. Ross, and C. Iadecola. 2001. Cyclooxygenase-2 inhibitor NS-398 protects neuronal nultures from lipopolysaccharide-induced neurotoxicity. Stroke 32, 2370-2375. https://doi.org/10.1161/hs1001.096057
  3. Chen, L. F. and W. C. Greene. 2004. Shaping the nuclear action of NF-kappaB. Nat. Rev. Mol. Cell Biol. 5, 392-401. https://doi.org/10.1038/nrm1368
  4. Cross, A. H., T. P. Misko, R. F. Lin, W. F. Hickey, J. L. Trotter, and R. G. Tilton. 1994. Aminoguanidine, an inhibitor of inducible nitric oxide synthase, ameliorates experimental autoimmune encephalomyelitis in SJL mice. J. Clin. Invest. 93, 2684-2690. https://doi.org/10.1172/JCI117282
  5. D'Aiuto, F., M. Parkar, G. Andreou, J. Suvan, P. M. Brett, D. Ready, and M. S. Tonetti. 2004. Periodontitis and systemic inflammation: control of the local infection is associated with a reduction in serum inflammatory markers. J. Dent. Res. 83, 156-160. https://doi.org/10.1177/154405910408300214
  6. Garthwaite, J. 1995. Neural nitric oxide signaling. Trends Neurosci. 18, 51-52. https://doi.org/10.1016/0166-2236(95)93866-V
  7. Ghosh, S. and M. S. Hayden. 2008. New regulators of NF-kappaB in inflammation. Nat. Rev. Immunol. 8, 837-848. https://doi.org/10.1038/nri2423
  8. Gilmore, T. D. 2006. Introduction to NF-kappaB: players, pathways, perspectives. Oncogene 25, 6680-6684. https://doi.org/10.1038/sj.onc.1209954
  9. Gookin, J. L., S. Chiang, J. Allen, M. U. Armstrong, S. H. Stauffer, C. Finnegan, and M. P. Murtaugh. 2006. NF-$\kappaB$mediated expression of iNOS promotes epithelial defense against infection by Cyptosporidium parvum in neonatal piglets. J. Physiol. 290, 164-174.
  10. Hawkey, C. J. 1999. COX-2 inhibitors. Lancet. 353, 307-314. https://doi.org/10.1016/S0140-6736(98)12154-2
  11. Jung, W. K., S. J. Heo, Y. J. Jeon, C. M. Lee, Y. M. Park, H. G. Byun, Y. H. Choi, S. G. Park, and I. W. Choi. 2009. Inhibitory effects and molecular mechanism of dieckol isolated from marine brown alga on COX-2 and iNOS in microglial cells. J. Agric. Food Chem. 57, 4439-4446. https://doi.org/10.1021/jf9003913
  12. Kaisho, T. and S. Akira. 2006. Toll-like receptor function and signaling. J. Allergy Clin. Immunol. 117, 979-987. https://doi.org/10.1016/j.jaci.2006.02.023
  13. Khazen, W., J. P. M'bika, C. Tomkiewicz, C. Benelli, C. Chany, A. Achour, and C. Forest. 2005. Expression of macrophage- selective markers in human and rodent adipocytes. FEBS. Lett. 579, 5631-5634. https://doi.org/10.1016/j.febslet.2005.09.032
  14. Kurumbail, R. G., A. M. Stevens, J. K. Gierse, J. J. Mcdonald, R. A. Stegeman, J. Y. Pak, D. Gildehaus, J. M. Miyashiro, T. D. Penning, K. Seibert, P. C. Lsakson, and W. C. Stallings. 1996. Structural basis for selective inhibition of cyclooxygenase- 2 by anti-inflammatory agents. Nature 384, 644-648. https://doi.org/10.1038/384644a0
  15. Lee, K. T., C. H. Ku, J. S. Eun, T. Y. Shin, J. P. Lim, D. O. Eom, O. P. Zee, and D. K. Kim. 2001. Antioxidative components from the aerial parts of Persicaria thunbergii. Arch. Pharm. Res. 6, 611-616.
  16. Lee, S. H., J. S. Han, S. J. Heo, J. Y. Hwang, and Y. J. Jeon. 2010. Protective effects of dieckol isolated from Ecklonia cava against high glucose-induced oxidative stress in human umbilical vein endothelial cells. Toxicol. In Vitro 24, 375-381. https://doi.org/10.1016/j.tiv.2009.11.002
  17. Moncada, S., R. M. J. Plamer, and E. A. Higgs. 1991. Nitric Oxide: Physiology, pathophysiology, and pharmacology. Pharmacol. 43, 109-142.
  18. Nathan, C. and Q. W. Xie. 1994. Nitric oxide sythases: Roles, tolls, and controls. Cell 78, 915-918. https://doi.org/10.1016/0092-8674(94)90266-6
  19. Oh, H. M., B. M. Kwon, N. I. Baek, S. H. Kim, I. S. Chung, M. H. Park, H. W. Park, J. H. Lee, H. W. Park, E. J. Kim, and D. K. Kim. 2005. Inhibitory activity of isorhamnetin from Persicaria thunbergii on farnesyl protein transferase. Arch. Pharm. Res. 28, 169-171. https://doi.org/10.1007/BF02977709
  20. Paine, A., B. Eiz-Vesper, R. Blasczyk, and S. Immenschuh. 2010. Signaling to heme oxygenase-1 and its anti-inflammatory therapeutic potential. Biochem. Pharmacol. 80, 1895-1903. https://doi.org/10.1016/j.bcp.2010.07.014
  21. Perkins, N. D., and T. D. Gilmore. 2006. Good cop, bad cop: the different faces of NF-kappaB. Cell Death Differ. 13, 759-772. https://doi.org/10.1038/sj.cdd.4401838
  22. St Clair, E. W., W. E. Wilkinson, T. Lang, L. Sanders, M. A. Misukonis, G. S. Gilkeson, D. S. Pisetaky, D. I. Granger, and J. B. Weinberg. 1996. Increased expression of blood mononuclear cell nitric oxide synthase type 2 in rheumatoid arthritis patients. J. Exp. Med. 184, 1173-1178. https://doi.org/10.1084/jem.184.3.1173
  23. Tak, P. P. and G. S. Firestein. 2001. NF-kappaB: a key role in inflammatory diseases. J. Clin. Invest. 107, 7-11. https://doi.org/10.1172/JCI11830
  24. Vane, J. R., J. A. Mitchell, I. Appleton, A. Tomlinson, D. Bishop-Bailey, J. Croxtall, and D. A. Willoughby. 1994. Inducible isoforms of cyclooxygenase and nitric-oxide synthase in inflammation. Proc. Natl. Acad. Sci. USA 91, 2046-2050. https://doi.org/10.1073/pnas.91.6.2046
  25. Watters, J. J., J. A. Sommer, Z. A. Pfeiffer, U. Prabhu, A. N. Guerra, and P. J. Bertics. 2002. A differential role for the mitogen-activated protein kinases in lipopolysaccharide signaling: the MEK/ERK pathway is not essential for nitric oxide and interleukin $1\beta$ production. J. Biol. Chem. 277, 9077-9087. https://doi.org/10.1074/jbc.M104385200
  26. Woo, M. S., S. H. Jung, J. W. Hyun, and H. S. Kim. 2004. Differential regulation of inducible nitric oxide synthase and cytokine gene expression by forskolin and dibutyryl-cAMP in lipopolysaccharide-stimulated murine BV2 microglial cells. Neurosci. Lett. 356, 187-190. https://doi.org/10.1016/j.neulet.2003.11.056
  27. Worrall, N. K., W. D. Lazenby, T. P. Misko, T. S. Lin, C. P. Rodi, P. T. Manning, R. G. Tilton, J. R. Williamson, and T. B. Ferguson. 1995. Modulation of in vivo alloreactivity by inhibition of inducible nitric oxide synthase. J. Exp. Med. 181, 63-70. https://doi.org/10.1084/jem.181.1.63

Cited by

  1. Anti-inflammatory Effect of Oyster Shell Extract in LPS-stimulated Raw 264.7 Cells vol.18, pp.1, 2013, https://doi.org/10.3746/pnf.2013.18.1.023
  2. Anti-Oxidative and Anti-Inflammation Activities of Pork Extracts vol.36, pp.2, 2016, https://doi.org/10.5851/kosfa.2016.36.2.275