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Abstract 
Recently, actor-critic methods have drawn significant interests in the area of reinforcement learning, and several algorithms have been 
studied along the line of the actor-critic strategy. In this paper, we consider a new type of actor-critic algorithms employing the kernel 
methods, which have recently shown to be very effective tools in the various fields of machine learning, and have performed investigations 
on combining the actor-critic strategy together with kernel methods. More specifically, this paper studies actor-critic algorithms utilizing the 
kernel-based least-squares estimation and policy gradient, and in its critic’s part, the study uses a sliding-window-based kernel least-squares 
method, which leads to a fast and efficient value-function-estimation in a nonparametric setting. The applicability of the considered 
algorithms is illustrated via a robot locomotion problem and a tunnel ventilation control problem. 
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1. Introduction 

 
Recently, actor-critic methods have drawn a great deal of 

interests in the areas of reinforcement learning, and several 
algorithms have been studied along the line of the actor-critic 
strategy [1-5]. In particular, this strategy has been successfully 
applied to the field of control problems [5-7], and is expected 
to be a very practical alternative in the area since it can deal 
with control law synthesis via observing only inputs, rewards, 
and states without having exact knowledge over the systems 
under consideration. In the actor-critic methods, a separate 
structure is used to explicitly represent the policy independent 
of the value functions, and the policy structure is known as the 
actor, because it is used to select actions, while the part 
handling value functions is called the critic, because it criticizes 
the actions made by the actor [8]. As is well-known, dealing 
with large-scale real-world application problems involves 
representing the value functions in the critic's part 
approximately. Since the quality of approximations may 
influence the performance significantly, to employ the high-
quality function approximation methods is an important sub-
problem here. Kernel methods are nowadays one of the most 
active research areas in modern machine learning techniques, 
and there have been a number of recent advances in various 
kernel methods including kernel-based regression [9]. In this 
paper, we consider a new type of actor-critic strategy 

employing kernel methods, which have recently shown to be 
very effective in the area of function approximation, and have 
performed investigations on combining the actor-critic strategy 
together with kernel methods. More specifically, this paper 
studies actor-critic algorithms utilizing the kernel-based least-
squares estimation and policy gradients, and in their critic part, 
we use a sliding-window-based kernel least-squares method, 
which leads to a fast and efficient value-function-estimation in 
a nonparametric setting. A preliminary work leading to a part of 
this paper’s results was reported in our conference papers [7,10]. 
The applicability of the considered algorithms is illustrated via 
locomotion of a two-linked robot arms and a tunnel ventilation 
control problem.  

The remaining parts of this paper are organized as follows: 
In Section 2, we show how the considered algorithms based on 
kernel methods and policy gradient can be derived in the 
framework of general actor-critic approach. Section 3 reports 
on the applicability of the considered algorithms via a robot 
locomotion problem and a tunnel ventilation control problem. 
Finally, in Section 4, concluding remarks are given. 

 
 
2. Methods using kernel-based least-squares 

estimation and policy gradient 
 
The reinforcement method is a computational approach for 

learning from direct interactions with the environment. It learns 
control policy by maximizing a numerical reward signal 
provided by the environment [8]. In this paper, we consider an 
RL approach employing the actor-critic architecture, the kernel-
based least-squares estimation, and policy gradient, and apply 
the considered approach to a robot locomotion problem and a  
tunnel ventilation control problem. 
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In general, the actor-critic methods consider a discounted 
reward reinforcement learning problem [5, 8] with states 

,Îs S  actions ,Îa A  rewards ,ÎÂr  and time steps 
{0,1,2, },Î Lt  in which the learning agent interacts with the 

environment. In the framework of RL, environment dynamics 
is usually characterized by state transition probabilities 

1( | , ) ( | , ),t t tp s s a Pr s s s s a a+¢ ¢= = =@       (1) 

and expected rewards 

( , ) [ | , ].t t tr s a E r s s a a= =@           (2) 

The objective of the learning agent is to pursue a policy that 
can maximize the discounted sum of the rewards 
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where (0,1)g Î  is the discount rate, ir  is the immediate 
reward observed after the state transition from state is  to 

1+is , 0s  is a designated start state, and p  denotes the policy 
from which actions are chosen. The action-generating policies 
can be deterministic or stochastic, and when it is stochastic, as 
in this paper, the policy is generally described by a conditional 
probability 
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Note that by introducing the value functions 
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one can rewrite the objective function in the following form 
(Dealing with continuous states and actions would require the 
corresponding summations changed into integral representation. 
Throughout this paper, the summation representation is used 
for notational simplicity): 
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where ( )pd s  is the discounted state distribution [13] defined 
by 
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In this paper, we consider a new type of actor-critic method 
utilizing the kernel-based least-squares estimation and policy 
gradient. In the critic part, we use a sliding-window-based 
kernel least-squares method for fast and efficient value-
function-estimation in a nonparametric setting. In the following, 
we explain about the critic part and the actor part of the 
considered approach in detail. 

First, we consider the use of kernel-based LS estimation for 
the critic. As mentioned before, the essence of the actor-critic 
method is the use of separate parameterized families for the 
actor part, which is represented by the policy distribution 

( | )qp a s , and the critic part, which is represented by value 
functions. For the parameterized families of the critic part, this 
paper considers a general class of functions derived from the 
form 

( ) ( ) ,T
vV s s vf% @                 (9) 

which approximates the state value function ( )qpV s  for 
action-generating policy qp . Also, to train the critic part, we 
utilize a strategy combining the kernel method [9] with the 
LSTD (least-squares temporal difference) method [11]. From 
the Bellman equation [8], 
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one can see that through a sampled trajectory, ( )qp i iV s  can 
be approximated by 1( )qpg ++ ii ir V s ; thus 1( )g ++ %

i v ir V s  is a 
valid estimate for ( )qp i iV s  when v  is properly chosen. 
Applying the LSTD method [11] to the approximation of the 
state value functions on sliding-windows, one can see that in 
order for the approximator ( )%

vV s  to be useful at the -t th 
time step (where 1³ -t N ), it is desirable to achieve the 
following: 
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where N  is the width of a sliding-window. In this least-
squares estimation, the sliding-window technique is applied to 
fix the size of the data, so that the algorithm can operate online 
in time-varying environments [12]. Here the number of 
computations required per new sample does not increase as the 
number of samples increases. Therefore, the complexity of the 
algorithm is reduced by considering only the observations in a 
window of fixed length. Since a recent observation should be 
emphasized more, the so-called forgetting factor (0,1)bÎ  
should be used. In this case, the following equation should be 
used instead of Eq. (11): 
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where 1, ,= - + Li t N t . 
In order to make rich functional expressions with ( )f Ts v  

in Eq. (9), this paper requires that :f ®S F  be chosen as the 
feature map associated with a Mercer kernel : ´ ®k S S R  
(For details on Mercer kernels, refer to books on kernel 
methods, . .,e g [9]). Kernel methods are based on the implicit 
nonlinear transformation of the data from the input space to a 
high-dimensional feature space. Note that the approximation of 
state value functions in a reproducing kernel Hilbert space 
gives a rigorous extension of the conventional approximation 
techniques for nonparametric settings. In particular, we restrict 
our attention to the most popular Gaussian Mercer kernel k ; 
thus, the following “kernel trick” holds true [9]: 
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where scalar products in the feature space can be seen as 
nonlinear (kernel) functions of the data in the input space. 
Since this property avoids explicit mapping to the feature space, 
any conventional scalar-product-based algorithm can be used in 
the feature space by solely replacing the scalar products with 
the Mercer kernel function in the input space [9]. According to 

0
( , ) [ | , , ],i

t i t t
i

Q s a E r s s a ap g p
¥

+
=

= =å@



 

 

Kernel-based actor-critic approach with applications 

269 

 

 

 

the representer theorem of [9], the optimal solution of Eq. (12) 
can be conveniently represented by a linear combination of the 
relevant feature vectors, i.e., 

1

1
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where is  are the observed states and ai  are the 
corresponding coefficients. Thus, the approximation problem, 
Eq. (12), can now be expressed as 
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and all instances in the sliding window correspond to the 
following compact form: 
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Here, note that based on the notations in Eqs. (19) and (20), the 
optimal solution *

tv  of Eq. (14) can be written more 
compactly as 

.* F@t t tv A                   (22) 

From the kernel trick, Eq. (13), F FT
t t  in Eq. (16) can be 

computed easily on the state space as follows: 
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which will be called the kernel matrix, tK . Note that diagonal 
entries of tK  are all equal to one, because k  is Gaussian. 
Also, note that kernel matrix tK  can be constructed by 
removing the first row and column of 1-tK , and the resultant 
matrix is referred to as 1-

)
tK . Then, the kernel values on the 

new data are inserted into the last row and column, i.e., 
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where 1 1 1 1 1( ) [ ( , ) ( , )]- + - + + +@ L T
t t t N t t tk s k s s k s s . From Eqs. 

(9), (13), (14), (16), and (23), an estimation of the state value 
function useful at the -t th time step is 

      (25) 

and the least-squares solution for the coefficients of the above 
kernel expression is 
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In this paper, we utilize the following to avoid numerical 
instabilities in the regression: 
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where e  is a small positive number added to ensure matrix 
nonsigularity. Finally, note that the resultant state value 
function approximator 
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will play an important role in the update process for the actor 
part. 

As an alternative to our main approach based on Eq. (27), a 
modification that will lead to a recursive solution is also 
proposed. In the modification, the least-square solution, Eq. 
(27), is replaced by the following: 
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where *( )DH  means the pseudo-inverse of DH . Eq. (29) 
may be viewed as the solution resulting from a two-stage solver 
for the approximation problem, Eq. (16). In its first stage, the 
least-squares problem 

( ) »t tDH Y DR                 (30) 

is considered, where tY  is the intermediary vector defined by 

,=t t tY K A                   (31) 

and its solution is obviously 
*( ) .=t tY DH DR                (32) 

Then its second stage solves the intermediary equation, Eq. 
(31), to obtain the solution, Eq. (29). One of the merits of this 
alternative approach is that 1-

tK  in Eq. (29) can be computed 
recursively. To clarify, note that with 
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in Eq. (24), its inverse can be written as follows [12]: 
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Also, note that from the matrix inversion formula, the inverse 
of the kernel matrix tK  can be obtained by the following: 
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Eqs. (33) to (38) show that 1-
tK  can be indeed computed 

recursively based on 1
1

-
-tK  and 1 1( )- +t tk s . 

In the following, we describe the actor trained via policy 
gradient [5, 13] in details for readers’ convenience. The main 
role of the actor is to generate actions via a parameterized 
family. At each state Îs S , an action Îa A  is drawn in 

accordance with the conditional distribution ( | )qp a s , where 
q  is the parameter vector characterizing the distribution. Thus, 
the objective to maximize can be written as follows: 

( ) ( ) ( ) ( | ) ( , )qp
qp q p= = å å

s a
J J d s a s r s a       (39) 

One of the convenient strategies for seeking the best 
distribution parameter q  is to utilize the direction of 

( )q qÑ J , which is often called the policy gradient. According 
to the famous policy gradient theorem [13], the policy gradient 
can be written as follows: 
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From the Bellman equation [8] 
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we see that through a sampled trajectory, ( , )qp k
k kQ s a  can be 

approximated by 1( )qpg ++ k
k kr V s ; thus 1( )g ++ %

kk v kr V s  and 
( )%

kv kV s  are valid estimates for ( , )qp k
k kQ s a  and ( )qp k

kV s , 
respectively. Hence, the approximation step via the sampled 
trajectory yields the following estimate: 
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Therefore, one can update the actor parameter q  via the 
following simple gradient-based rule: 

±
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in which 0a >  is the learning rate, and ± tTD  is the so-called 
temporal difference [8] computed by 

±
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t t v t v tTD r V s V sg ++ -% %@           (44) 

As a conditional probability density function for the continuous 
input space, one can consider the normal distribution. In this 
case, a normal distribution is generally employed as the density 

( | )qp a s  that governs the control selection. Then the actual 
output of the stochastic unit can be set as: 

2( ( ), )q s: aa N k s                 (45) 

where a  is a Gaussian random variable with a density 
function expressed as: 
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       (46) 

When the application domain concerns the discrete action 
space, one can consider the Gibbs policy [13] instead.  

 
 

3. Applications  
 
In this section, we address the application of the considered 

kernel-based actor-critic approach to two control problems. The 
first problem deals with locomotion of a robot arm [14]. More 
specifically, this problem considers a planar two-linked 
manipulator in a gravitational environment. The mission of the 
robot is to move forward as fast as possible, without knowing 
the environment in advance. So, the agent is required to find 
out an efficient policy based on the observed agent-
environment interactions. The immediate reward for this 
problem is defined as the distance that the body of the robot 
moves forward in the current step. At the -t th time step, the 
agent reads the normalized joint angles obtained via a simple 
piecewise linear scaling, and outputs a binary action value 
( 1+ or 1)-  for each joint, which indicates turning direction 
of the joint motor, according to its stochastic policy. For more 
details on the problem, one may refer to specifications in [7, 
10]. The approach of this paper was applied to the robot for 
sufficiently many time steps. For each parameter setting, 20 
independent trials were tested, and in each trial, its initial state 
of the robot was set such that all links are aligned horizontally. 
In order to investigate the robustness of the kernel-based actor-
critic approach, we performed experiments for a range of 
window size ( N ). Results reported in Fig. 1 show that the 
considered algorithms yields robust performance around the 
range used. In other words, performance tends to remain the 
same as long as the window size is sufficiently large. 
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Fig. 1.  The average performance of 20 trials on varying 
window size ( )N .  The main approach with 15N = case 
(denoted ‘o’), the main approach with 25N = case (denoted ‘◊’), 
the alternative approach with 15N = case (denoted ‘+’), and the 
alternative approach with 25N = case (denoted ‘x’). 
As our second application domain, we considered a tunnel 
ventilation control problem [15]. This problem focuses on 
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adjusting the CO pollutant level inside the tunnel as one of the 
control targets. The pollutant source setting the pollutant level 
inside the tunnel is estimated by using actual traffic data 
collected from a real tunnel system, the Dunnae Tunnel located 
on Youngdong Highway in Korea, as the linear combination of 
the number of vehicles and the pollutant emission rates 
according to the vehicle types [16]. The actor-critic algorithms 
considered in this paper determines the optimal number of 
operational jet-fans with respect to the two aforementioned 
control purposes. The reward for this problem consists of a 
combination of two control objectives: maintaining an adequate 
level of pollutants and minimizing electrical power 
consumption. As such, in Eq. (47), the pollutant level over an 
allowable limit and the energy consumption proportional to the 
number of running jet-fans are combined with an appropriate 
weighting factor, K : 

{ }( ) ,

,

>

<

- - + ×
=

-

ìï
í
ïî

current ref JF current ref

JF current ref

if CO CO

if CO CO

CO CO K E
r

E
(47) 

l refCO : the allowable reference CO pollutant level, 
chosen to be 25ppm in this study 

l currentCO : the current CO pollutant level 

l JFE : the electrical energy consumption by the operation 
of jet-fans 

In Eq. (47), K  is manually selected according the objective 
considered to be relatively critical. For the details on the 
system parameters, one may refer to [15]. The suggested 
algorithms utilize the following parameters for the tunnel 
ventilation control simulations: Learning rate 0.3a = ; 
Discount rate 0.5g = ; Kernel width 0.3s = ; Standard 
deviation of the normal distribution 2.5s =a ; Window size 

60=N ; Forgetting factor 0.999b = ; Initial actor parameter 
vector [0 0]q = L T

initial ; Reward weighting factor 
0.045=K . Simulations for the second application problem 

were implemented with each unit time step equal to one minute. 
In a real tunnel ventilation system, the jet-fans should not be 
turned on and off very often to assure a reasonably long 
lifetime of the jet-fans. Another reason for the restricted 
switching on-off of the jet-fans is that the start-up current is 
higher than normal operation current. Specifically, when a jet-
fan begins to operate, for the first one minute, about 30% of the 
total electric power is additionally required. Therefore, in this 
study, a jet-fan-alternating algorithm is adopted to maximize 
the lifetime of the jet-fans; the algorithm evenly uses all the jet-
fans and prevents frequent switching of each jet-fan [17]. Fig. 2 
shows the 3-D plot of the pollutant distribution for the 
‘uncontrolled case’ for the last 50 time steps of all 5000 time 
steps. The ‘uncontrolled case’ is defined as when only the 
nominal number of jet-fans, which is chosen as 15 out of the 32 
total jet-fans, is constantly operated. In this case, the pollutant 
source, which is the only input for setting the pollutant 
distribution in the tunnel, is calculated from traffic volume 

information measured in the real tunnel. In this case, the 
maximum CO pollutant level considerably fluctuates to the 
allowable level, 25ppm. 

The same traffic data as that of the uncontrolled case was 
used to perform the simulations for the ‘controlled case’. 
However, in this case, instead of using the nominal number of 
jet-fans, the control inputs generated by the considered actor-
critic algorithm were applied to the tunnel ventilation system. 
Fig. 3 presents the performance of a learning controller trained 
by the suggested approach through a sample case. With respect 
to the two control objectives expressed by the reward 
formulation, the result of the simulation can be explained as 
follows. First, when the CO pollutant level exceeded the 
allowable limit, 25ppm, the controller increased the number of 
operational jet-fans to maintain the CO level under the limit 
value; this is the first control objective. On the other hand, if 
the CO pollutant was maintained well below the allowable 
limit and an excessive amount of energy was consumed by the 
operating jet-fans unnecessarily, the controller decreased the 
number of operational jet-fans and conserved electricity; this is 
the second control objective. After sufficient time, which was 
approximately 2500 time steps in this sample case, had passed 
for learning, as shown in Fig. 4, the CO pollutant level along 
the time axis stayed near the allowable limit. This result 
demonstrates that the approach of this paper successfully 
satisfied two goals of the tunnel ventilation control. 

 

 
Fig. 2  3-D plot of the pollutant distribution for the last 50 
time steps for the ‘uncontrolled case’ (CO vs. time and 
longitudinal distance along tunnel) 

 
To quantitatively evaluate the performance of the control 

algorithm, the standard deviation of the CO peak values was 
calculated every 500 steps during the learning process 
composed of total 5000 steps. A low standard deviation of CO 
peak values in the vicinity of the allowable limit, 25ppm, 
translates to the prevention of excessive pollutant levels and 
reduction of unnecessary energy consumption, simultaneously. 
In Fig. 5, the standard deviations of three cases controlled by 
three different controllers are compared with each other: (i) 
Controller 1: a previously developed RL-based control 
algorithm by Chu et al. [15]; (ii) Controller 2: an actor-critic 
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control algorithm using kernel-based LS estimation (alternative 
algorithm utilizing Eq.(29)); (iii) Controller 3: an actor-critic 
control algorithm using kernel-based LS estimation (main 
algorithm utilizing Eq. (27)). 

 

 
Fig. 3  Peak value of CO for the all 5000 time steps for the 
‘controlled case by the considered RL-based controller (main 
algorithm based on Eq. (27))’ 

 

Fig. 4  3-D plot of the pollutant distribution for the last 50 
time steps for the ‘controlled case by the considered RL-based 
controller (main algorithm based on Eq. (27))’ (CO vs. time 
and longitudinal distance along tunnel) 

 
To increase the credibility of the evaluation, the standard 

deviations of the three cases were averaged with 10 episodic 
tasks. The standard deviations of all the three controllers show 
a decreasing trend with time; this means that the controllers 
were designed to basically pursue the control objectives. Note 
that the two controllers using kernel-based LS estimation show 
a superior performance to the previously developed RL-based 
control algorithm. A non-parametric setting based on kernel 
methods enables a more rigorous formulation of the 
approximation of the state value function. Therefore, the 
quality of approximation was increased, and the kernel-based 
controllers attained better performances than the previously 
developed RL-based controller. In the meantime, the controller 
using the alternative algorithm depended on how accurately the 

two-stage solution, Eqs. (29) to (38), could approximate the 
true least-squares solution. The inaccuracy resulting from the 
sophistication of the alternative algorithm lowered the quality 
of approximation of the state value function and the control 
performance below that of the controller using the main 
algorithm based on Eq. (27). In Table 1, four controllers, 
including the uncontrolled case, are compared with respect to 
the mean value, standard deviation, maximum/minimum value 
of the peak CO level and the consumed energy during the last 
500 time steps averaged with 10 episodic tasks. While the four 
cases have similar mean values for the CO level, the maximum 
CO levels and consumed energies are lower in the controlled 
cases. These results mean that the controllers employing RL 
methodology were designed to satisfy the two control purposes 
well. In the comparison of the three controlled cases, the actor-
critic control algorithm using kernel-based exact LS estimation 
(main algorithm) approached the lowest standard deviation as 
the learning progressed, indicating the best control performance. 

 

Fig. 5  Standard deviations averaged with 10 episodic tasks 
for the considered controllers (main algorithm and alternative 
algorithm) and a previously developed RL-based controller 
 

Table 1  Mean, standard deviation, maximum/minimum value 
of peak CO level and consumed energy during the last 500 time 
steps averaged with 10 episodic tasks 

Case 
CO level (ppm) Energy 

(kWh) COmean COstd COmax COmin 

Uncontrolled 
case 

24.48 2.23 29.71 19.78 3750 

Controller 1 24.34 0.95 27.42 21.87 3617 
Controller 2 24.99 0.73 27.15 22.42 3445 
Controller 3 25.03 0.59 25.45 23.54 3428 

 
 

4. Concluding remarks 
 
In this paper, we studied on a new type of actor-critic 

strategy in which the critic part is trained by kernel-based least-
squares estimation and the actor part is trained via policy 
gradient, and applied the strategy to two control problems. 
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Updating the approximate state value function via kernel 
methods is the key ingredient of the studied strategy, and it was 
efficiently implemented utilizing the concept of sliding 
windows. Algorithms resultant from the strategy consist of the 
main approach based on the exact solution and the alternative 
one based on an approximate recursive solution. The 
applicability of the considered algorithms was illustrated with 
good performance via tunnel ventilation control and 
locomotion of a two-linked robot arms. One of the future topics 
that may be considered along the line of extending this paper is 
to address the robustness issue for the stochastic and/or 
uncertain systems. 
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