DOI QR코드

DOI QR Code

Supply of Tryptophan and Tryptamine Influenced the Formation of Melatonin in Viola Plants

제비꽃속(Viola) 식물에서 tryptophan과 tryptamine 공급이 멜라토닌 생성에 미치는 영향

  • Kim, Yeo-Jae (Department of Molecular Biology & Institute of Nanosensor and Biotechnology, Dankook University) ;
  • Yoon, Young-Ha (Department of Molecular Biology & Institute of Nanosensor and Biotechnology, Dankook University) ;
  • Park, Woong-June (Department of Molecular Biology & Institute of Nanosensor and Biotechnology, Dankook University)
  • 김여재 (단국대학교 분자생물학과 & 단국대학교 나노센서바이오텍연구소) ;
  • 윤영하 (단국대학교 분자생물학과 & 단국대학교 나노센서바이오텍연구소) ;
  • 박웅준 (단국대학교 분자생물학과 & 단국대학교 나노센서바이오텍연구소)
  • Received : 2010.11.01
  • Accepted : 2011.01.04
  • Published : 2011.02.28

Abstract

Melatonin has been known as an animal hormone. However, melatonin exists in diverse organisms including higher plants. The biosynthesis and physiological roles for melatonin in plants is still largely unknown, although both dicot and monocot plants have melatonin and some medicinal plants even contain large amounts of melatonin. In this study we detected melatonin in diverse Viola plants, in which melatonin had not been examined so far, by reverse phase HPLC analysis, demonstrating the wide existence of melatonin in the genus of Viola. We then fed tryptophan (Trp) and tryptamine (TAM) to the incubation medium for Viola leaf sections to test their effects on melatonin formation. Trp is also the hypothesized starting material of melatonin in plants, and TAM is the following intermediate produced by the decarboxylation of Trp. Trp feeding did not affect the contents of melatonin. In contrast, TAM feeding clearly increased the level of melatonin in Viola leaves. Because TAM is derived from Trp, we concluded that the Trp-TAM pathway exists in Viola plants as well. Ineffectiveness of Trp feeding to the change of melatonin contents supports the hypothesis that the decarboxylation step from Trp to TAM is the rate-limiting step in plant melatonin biosynthesis.

동물호르몬으로 알려진 멜라토닌(melatonin)은 동물뿐 아니라 고등 식물을 포함한 다양한 생명체에 존재한다. 식물에서는 쌍떡잎 식물과 외떡잎 식물에 멜라토닌이 널리 존재하며 일부 약용 식물에는 다량으로 함유되어 있지만 아직 그 생합성 과정과 생리학적 기능은 확립되지 않았다. 본 연구에서는 reverse phase HPLC 분석을 통하여 이제까지 분석이 이루어지지 않았던 여러 제비꽃속(Viola) 식물들에 멜라토닌이 고르게 분포한다는 사실을 확인하였다. 그 다음 제비꽃속 식물들의 잎 절편을 배양하며 멜라토닌의 최초 전구체로 제안된 tryptophan (Trp)과 이의 탈카르복시화(decarboxylation) 중간산물인 tryptamine (TAM)을 공급하였다. 그 결과 Trp을 공급하면 멜라토닌 생성에 영향을 미치지 않았지만 TAM을 공급한 경우에는 멜라토닌의 함량이 증가하였다. TAM은 Trp에서 유래하므로 Trp-TAM 경로가 제비꽃속 식물에도 존재하는 것으로 판단되며, Trp 공급이 멜라토닌 함량에 영향을 미치지 않는 결과는 Trp을 TAM으로 전환하는 탈카르복시화 과정이 식물 멜라토닌 생합성 과정의 속도결정 단계일 것이라는 가설을 지지하는 것으로 사료된다.

Keywords

References

  1. Ambriz-Tututi, M., H. I. Rocha-Gonzalez, S. L. Cruz, and V. Granados-Soto. 2009. Melatonin: A hormone that modulates pain. Life Sci. 84, 489-498. https://doi.org/10.1016/j.lfs.2009.01.024
  2. Boutin, J. A., V. Audinot, G. Ferry, and P. Delagrange. 2005. Molecular tools to study melatonin pathways and actions. Trend. Phamacol. Sci. 26, 412-419. https://doi.org/10.1016/j.tips.2005.06.006
  3. Baldi, B. G., B. R. Maher, J. P. Slovin, and J. D. Cohen. 1991. Stable Isotope Labeling, in vivo, of D- and L-Tryptophan pools in Lemna gibba and the low incorporation of label into indole-3-acetic acid. Plant Physiol. 95, 1203-1208. https://doi.org/10.1104/pp.95.4.1203
  4. Chattoraj, A., T. Liu, L. S. Zhang, Z. Huang, and J. Borjigin. 2009. Melatonin formation in mammals: in vivo perspectives. Rev. Endocr. Metab. Disord. 10, 237-243. https://doi.org/10.1007/s11154-009-9125-5
  5. Chen, G., Y. Huo, D. X. Tan, Z. Liang, W. Zhang, and Y. Zhang. 2003. Melatonin in Chinese medicinal herbs. Life Sci. 73, 19-26. https://doi.org/10.1016/S0024-3205(03)00252-2
  6. Claustrat, B., J. Brun, and G. Chazot. 2005. The basic physiology and pathophysiology of melatonin. Sleep Med. Rev. 9, 11-24. https://doi.org/10.1016/j.smrv.2004.08.001
  7. Ferguson, S. A., S. M. Rajaratnam, and D. Dawson. 2010. Melatonin agonists and insomnia. Expert. Rev. Neurother. 10, 305-318. https://doi.org/10.1586/ern.10.1
  8. Fuhrberg, B., I. Balzer, R. Hardeland, A. Werner, and K. Luning. 1996. The vertebrate pineal hormone melatonin is produced by the brown alga Pterygophora californica and mimics dark effects on growth rate in the light. Planta 200, 125-131.
  9. Glawischnig, E., A. Tomas, W. Eisenreich, P. Spiteller, A. Bacher, and A. Gierl. 2000. Auxin biosynthesis in maize kernels. Plant Physiol. 123, 1109-1120. https://doi.org/10.1104/pp.123.3.1109
  10. Ireland, D. C., M. L. Colgrave, and D. J. Craik. 2006. A novel suite of cyclotides from Viola odorata: sequence variation and the implications for structure, function and stability. Biochem. J. 400, 1-12. https://doi.org/10.1042/BJ20060627
  11. Kang, K., S. Kang, K. Lee, M. Park, and K. Back. 2008. Enzymatic features of serotonin biosynthetic enzymes and serotonin biosynthesis in plants. Plant Signal. Behave. 3, 389-390. https://doi.org/10.4161/psb.3.6.5401
  12. Kolar, J. and I. Machackova. 2005. Melatonin in higher plants. Occurrence and possible functions. J. Pineal Res. 39, 333-341. https://doi.org/10.1111/j.1600-079X.2005.00276.x
  13. Korkmaz, A., T. Topal, D. X. Tan, and R. J. Reiter. Role of melatonin in metabolic regulation. Rev. Endocr. Metab. Disord. 10, 261-270.
  14. Lee, C. H. 1993. Viola native to Korea. J. Korean Flower Res. Soc. 2, 13-22.
  15. Malitsky, S., E. Blum, H. Less, I. Venger, M. Elbaz, S. Morin, Y. Eshed, and A. Aharoni. 2008. The transcript and metabolite networks affected by the two clades of Arabidopsis glucosinolate biosynthesis regulators. Plant Physiol. 148, 2021-2049. https://doi.org/10.1104/pp.108.124784
  16. Murch, S. J. and P. K. Saxena. 2002. Melatonin: a potential regulator of plant growth and development? In Vitro Cell. Dev. Biol. Plant 38, 531-536. https://doi.org/10.1079/IVP2002333
  17. Paredes, S. D., A. Korkmaz, L. C. Manchester, D. X. Tan, and R. J. Reiter. 2009. Phytomelatonin: a review. J. Exp. Bot. 60, 57-69.
  18. Poeggler, B., I. Balzer, R. Haderland, and A. Lerchl. 1991. Pineal hormone melatonin oscillates also in the dinoflagellate Gonyaulax polyedra. Naturwissenschaften 78, 268-269. https://doi.org/10.1007/BF01134354
  19. Posmyk, M. M. and K. M. Janas. 2009. Melatonin in plants. Acta Physiol. Plant 31, 1-11.
  20. Rodriguez, C., J. C. Mayo, R. M Sainz, I. Antolin, F. Herrera, V. Martin, and R. J. Reiter. 2004. Regulation of antioxidant enzymes: a significant role for melatonin. J. Pineal Res. 36, 1-9. https://doi.org/10.1046/j.1600-079X.2003.00092.x
  21. Schroeder, P., C. Abele, P. Gohr, U. Stuhlfauth-Roisch, and W. Gross. 1999. Latest on enzymology of serotonin biosynthesis in walnut seeds. Adv. Exp. Med. Biol. 467, 637-644. https://doi.org/10.1007/978-1-4615-4709-9_81
  22. Srinivasan V, D. W. Spence, S. R. Pandi-Perumal, I. Trakht, and D. P. Cardinali. 2008. Therapeutic actions of melatonin in cancer: possible mechanisms. Integr. Cancer Ther. 7, 189-203. https://doi.org/10.1177/1534735408322846
  23. Tan, D. X., L. C Manchester, P. Di Mascio, G. R. Martinez, F. M. Prado, and R. J. Reiter. 2007. Novel rhythms of N1-acetyl-N2-formyl-5-methoxykynuramine and its precursor melatonin in water hyacinth: importance for phytoremediation. FASEB J. 21, 1724-1729. https://doi.org/10.1096/fj.06-7745com
  24. Tomita, T., K. Hamase, H. Hayashi, H. Fukuda, J. Hirano, and K. Zaitsu. 2003. Determination of endogenous melatonin in the individual pineal glands of inbred mice using precolumn oxidation reversed-phase micro-high-performance liquid chromatography. Anal. Biochem. 316, 154-161. https://doi.org/10.1016/S0003-2697(03)00079-4
  25. van Tassel, D. L., N. Roberts, A. Lewy, and S. D. O'Neill. 2001. Melatonin in plant organs. J. Pineal Res. 31, 8-15. https://doi.org/10.1034/j.1600-079X.2001.310102.x
  26. Vivien-Roles, B. and P. Pevet. 1993. Melatonin: presence and formation in invertebrates. Experimentia 49, 642-647. https://doi.org/10.1007/BF01923945
  27. Witkowska-Banaszczak, E, W. Bylka, I. Matlawska, O. Goslinska, and Z. Muszynski. 2005. Antimicrobial activity of Viola tricolor herb. Fitoterapia 76, 458-461. https://doi.org/10.1016/j.fitote.2005.03.005
  28. Yoo, K. O. and J. H. Kim. 2006. Analysis of taxonomic relationships of Korean Viola based on trnL-trnF region sequences of chloroplast DNA. Flower Res. J. 14, 232-240.

Cited by

  1. Melatonin in plants and other phototrophs: advances and gaps concerning the diversity of functions vol.66, pp.3, 2015, https://doi.org/10.1093/jxb/eru386
  2. Melatonin regulates Arabidopsis root system architecture likely acting independently of auxin signaling vol.53, pp.3, 2012, https://doi.org/10.1111/j.1600-079X.2012.00996.x
  3. Phytomelatonin: A Review vol.8, pp.5, 2018, https://doi.org/10.1134/S2079086418050080