DOI QR코드

DOI QR Code

트립토판 대사체 3-hydroxyanthranilic acid의 TRAIL-유도 활성 T 세포 사멸 효과

Tryptophan Metabolite 3-Hydroxyanthranilic Acid Augments TRAIL-Induced Apoptosis in Activated T Cells

  • 서수길 (인제대학교 의과대학 미생물학교실)
  • Seo, Su-Kil (Department of Microbiology and Immunology, College of Medicine, Inje University)
  • 투고 : 2011.01.19
  • 심사 : 2011.02.21
  • 발행 : 2011.02.28

초록

Indoleamine 2,3-dioxygenase (IDO)에 의한 트립토판 대사체의 생성은 T 세포에 강력한 억제효과를 미치지만 여전히 그 작용기전에 대한 연구보고는 미비한 실정이다. 본 연구자는 트립토판 대사체 3-HAA가 선택적으로 활성 T 세포의 사멸을 촉진시키는 효과가 있음을 확인하였고, 이는 세포주기 억제와는 관련이 없었다. 3-HAA 처리 시 활성 T 세포에서 TRAIL과 그의 수용체의 발현이 현저히 증가하고, 이들 상호작용을 차단하였을 때 3-HAA-매개 활성 T 세포사멸 효과가 유의하게 낮아졌다. 본 연구를 통해 트립토판 대사체 3-HAA의 선택적 T 세포 억제 효과가 TRAIL-유도 세포사멸과 관련됨을 알 수 있다.

Generation of tryptophan-derived metabolites by indoleamine 2,3-dioxygenase (IDO) is a potent immunoregulatory mechanism in T cell responses. However, the mechanism remains unclear. We showed that 3-hydroxyanthranilic acid (3-HAA), the most potent metabolite, selectively induced apoptosis in activated T cells, but not in resting T cells. This was not associated with cell cycle arrest. We found that TRAIL expression was selectively induced in activated T cells by treatment of 3-HAA. Blockade of the TRAIL: DR4/DR5 pathway significantly inhibited 3-HAA-mediated T cell death. Our data suggest that TRAIL-induced apoptosis is involved in the mechanism of 3-HAA-mediated T cell death.

키워드

참고문헌

  1. Alexander, A. M., M. Crawford, S. Bertera, W. A. Rudert, O. Takikawa, P. D. Robbins, and M. Trucco. 2002. Indoleamine 2,3-dioxygenase expression in transplanted NOD Islets prolongs graft survival after adoptive transfer of diabetogenic splenocytes. Diabetes 51, 356-365. https://doi.org/10.2337/diabetes.51.2.356
  2. Fallarino, F., U. Grohmann, C. Vacca, R. Bianchi, C. Orabona, A. Spreca, M. C. Fioretti, and P. Puccetti. 2002. T cell apoptosis by tryptophan catabolism. Cell Death Differ. 9, 1069-1077. https://doi.org/10.1038/sj.cdd.4401073
  3. Frumento, G., R. Rotondo, M. Tonetti, G. Damonte, U. Benatti, and G. B. Ferrara. 2002. Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine 2,3-dioxygenase. J. Exp. Med. 196, 459-468. https://doi.org/10.1084/jem.20020121
  4. Gura, T. 1997. How TRAIL kills cancer cells, but not normal cells. Science 277, 768. https://doi.org/10.1126/science.277.5327.768
  5. Grohmann, U., F. Fallarino, R. Bianchi, C. Orabona, C. Vacca, M. C. Fioretti, and P. Puccetti. 2003. A defect in tryptophan catabolism impairs tolerance in nonobese diabetic mice. J. Exp. Med. 198, 153-160. https://doi.org/10.1084/jem.20030633
  6. Hayashi, T., L. Beck, C. Rossetto, X. Gong, O. Takikawa, K. Takabayashi, D. A. Carson, and E. Raz. 2004. Inhibition of experimental asthma by indoleamine 2,3-dioxygenase. J. Clin. Invest. 114, 270-279. https://doi.org/10.1172/JCI21275
  7. Hayashi, T., J. H. Mo, X. Gong, C. Rossetto, A. Jang, L. Beck, G. I. Elliott, I. Kufareva, R. Abagyan, D. H. Broide, J. Lee, and E. Raz. 2007. 3-Hydroxyanthranilic acid inhibits PDK1 activation and suppresses experimental asthma by inducing T cell apoptosis. Proc. Natl. Acad. Sci. USA 104, 18619-18624. https://doi.org/10.1073/pnas.0709261104
  8. Janssen, E. M., N. M. Droin, E. E. Lemmens, M. J. Pinkoski, S. J. Bensinger, B. D. Ehst, T. S. Griffith, D. S. Green, and S. P. Schoenberer. 2005. CD4+ T-cell help controls CD8+ T-cell memory via TRAIL-mediated activation-induced cell death. Nature 434, 88-93. https://doi.org/10.1038/nature03337
  9. Jeremias, I., I. Herr, T. Boehler, and K. M. Debatin. 1998. TRAIL/Apo-2-ligand-induced apoptosis in human T cells. Eur. J. Immunol. 28, 143-152. https://doi.org/10.1002/(SICI)1521-4141(199801)28:01<143::AID-IMMU143>3.0.CO;2-3
  10. Kotzin, B. L., D. Y. Leung, J. Kappler, and P. Marrack. 1993. Superantigens and their potential role in human disease. Adv. Immunol. 54, 99-166. https://doi.org/10.1016/S0065-2776(08)60534-9
  11. Lee, S. M., Y. S. Lee, J. H. Choi, S. G. Park, I. W. Choi, Y. D. Joo, W. S. Lee, J. N. Lee, I. H. Choi, and S. K. Seo. 2010. Tryptophan metabolite 3-hydroxyanthranilic acid selectively induces activated T cell death via intracellular GSH depletion. Immunol. Lett. 132, 53-60. https://doi.org/10.1016/j.imlet.2010.05.008
  12. Mellor, A. L. and D. H. Munn. 2004 IDO expression by dendritic cells: tolerance and tryptophan catabolism. Nat. Rev. Immunol. 4, 762-774. https://doi.org/10.1038/nri1457
  13. Muller, A. J., J. B. DuHadaway, P. S. Donover, E. Sutanto-Ward, and G. C. Prendergast. 2005. Inhibition of indoleamine 2,3-dioxygenase, an immunoregulatory target of the cancer suppression gene Bin1, potentiates cancer chemotherapy. Nat. Med. 11, 312-319. https://doi.org/10.1038/nm1196
  14. Munn, D. H., M. D. Sharma, B. Baban, H. P. Harding, Y. Zhang, D. Ron, and A. L. Mellor. 2005. GCN2 kinase in T cells mediates proliferative arrest and anergy induction in response to indoleamine 2,3-dioxygenase. Immunity 22, 633-642. https://doi.org/10.1016/j.immuni.2005.03.013
  15. Munn, D. H., M. Zhou, J. T. Attwood, I. Bondarev, S. J. Conway, B. Marshall, C. Brown, and A. L. Mellor. 1998. Prevention of allogeneic fetal rejection by tryptophan catabolism. Science 281, 1191-1193. https://doi.org/10.1126/science.281.5380.1191
  16. Platten, M., P. P. Ho, S. Youssef, P. Fontoura, H. Garren, E. M. Hur, R. Gupta, L. Y. Lee, B. A. Kidd, W. H. Robinson, R. A. Sobel, M. L. Selley, and L. Steinman. 2005. Treatment of autoimmune neuroinflammation with a synthetic tryptophan metabolite. Science 310, 850-855. https://doi.org/10.1126/science.1117634
  17. Sakurai, K., J. P. Zou, N. I. Torres, J. R. Tschetter, H. S. Kim, and G. M. Shearer. 2002. Study of the effect of indoleamine 2,3-dioxygenase on murine mixed lymphocyte reactions and skin allograft rejection. Transplant. Proc. 34, 3271-3273. https://doi.org/10.1016/S0041-1345(02)03560-1
  18. Sakurai, K., J. Zhou, J. Tschetter, J. Ward, and G. Shearer. 2002. Effect of indoleamine 2,3-dioxygenase on induction of experimental autoimmune encephalomyelitis. J. Neuroimmunol. 129, 186-196. https://doi.org/10.1016/S0165-5728(02)00176-5
  19. Schwarcz, R. 2004. The kynurenine pathway of tryptophan degradation as a drug target. Curr. Opin. Pharmacol. 4, 12-17. https://doi.org/10.1016/j.coph.2003.10.006
  20. Seo, S. K., J. H. Choi, Y. H. Kim, W. J. Kang, H. Y. Park, J. H. Suh, B. K. Choi, D. S. Vinay, and B. S. Kwon. 2004. 4-1BB-mediated immunotherapy of rheumatoid arthritis. Nat. Med. 10, 1088-1094. https://doi.org/10.1038/nm1107
  21. Shimizu, T., S. Nomiyama, F. Hirata, and O. Hayaishi. 1978. Indoleamine 2,3-dioxygenase: purification and some properties. J. Biol. Chem. 253, 4700-4706.
  22. Taylor, M. W. and G. Feng. 1991. Relationship between IFN-${\gamma}$, indoleamine 2,3-dioxygenase, and tryptophan catabolism. FASEB. J. 5, 2516-2522.
  23. Terness, P., T. M. Bauer, L. Rose, C. Dufter, A. Watzlik, H. Simon, and G. Opelz. 2002. Inhibition of allogeneic T cell proliferation by indoleamine 2,3-dioxygenase-expressing dendritic cells: mediation of suppression by tryptophan metabolites. J. Exp. Med. 196, 447-457. https://doi.org/10.1084/jem.20020052
  24. Uyttenhove, C., L. Pilotte, I. Theate, V. Stroobant, D. Colau, N. Parmentier, T. Boon, and B. J. Van den Eynde. 2003. Evidence for a tumoral immune resistance mechanism based on tryptophan degradation by indoleamine 2,3-dioxygenase. Nat. Med. 9, 1269-1274. https://doi.org/10.1038/nm934
  25. Vidalain, P. O., O. Azocar, C. Rabourdin-Combe, and C. Servet-Delprat. 2001. Measle virus-infected dendritic cells develop immunosuppressive and cytotoxic activities. Immunobiology. 204, 629-638. https://doi.org/10.1078/0171-2985-00102
  26. Wiley, S. R., K. Schooley, P. J. Smolak, W. S. Din, C. P. Huang, J. K. Nicholl, G. R. Sutherland, T. D. Smith, C. Rauch, and C. A. Smith. 1995. Identification and characterization of a new member of the TNF family that induces apoptosis. Immunity 3, 673-682. https://doi.org/10.1016/1074-7613(95)90057-8