DOI QR코드

DOI QR Code

Hydrolysis of Rice Syrup Meal Using Various Commercial Proteases

쌀 시럽박의 단백질 가수분해 특성

  • Kim, Chang-Won (Department of Food Science and Biotechnology & Institute of Life Science and Resources, Kyung Hee University) ;
  • Park, Jin-Woo (Department of Food Science and Biotechnology & Institute of Life Science and Resources, Kyung Hee University) ;
  • Choi, Hyuk-Joon (Research & Development Department, BKbio Co. Ltd.) ;
  • Han, Bok-Kyung (Research & Development Department, BKbio Co. Ltd.) ;
  • Yoo, Seung-Seok (Department of Culinary and Food Service Management, Sejong University) ;
  • Kim, Byung-Yong (Department of Food Science and Biotechnology & Institute of Life Science and Resources, Kyung Hee University) ;
  • Baik, Moo-Yeol (Department of Food Science and Biotechnology & Institute of Life Science and Resources, Kyung Hee University) ;
  • Kim, Young-Rok (Department of Food Science and Biotechnology & Institute of Life Science and Resources, Kyung Hee University)
  • 김창원 (경희대학교 생명과학대학 식품공학과) ;
  • 박진우 (경희대학교 생명과학대학 식품공학과) ;
  • 최혁준 ((주)비케이바이오 연구소) ;
  • 한복경 ((주)비케이바이오 연구소) ;
  • 유승석 (세종대학교 호텔관광대학 외식경영학과) ;
  • 김병용 (경희대학교 생명과학대학 식품공학과) ;
  • 백무열 (경희대학교 생명과학대학 식품공학과) ;
  • 김영록 (경희대학교 생명과학대학 식품공학과)
  • Received : 2011.02.06
  • Accepted : 2011.02.09
  • Published : 2011.02.28

Abstract

Rice syrup meal (RSM) was enzymatically hydrolyzed using eight commercial proteases (Protamex, Neutrase, Flavourzyme, Alcalase, Protease M, Protease N, Protease A, Molsin F) for 4 hr at optimum pH and temperature. Proteolytic hydrolysates were examined in supernatant and precipitate using Lowry protein assay, semimicro Kjeldahl method and gravimetric method using weight difference before and after enzymatic hydrolysis. Although RSM contains a high amount of protein (71.2%), only a very small amount of protein was hydrolyzed. Two proteases (Protease M and Protease N) were found to be the most effective in the hydrolysis of RSM protein. In Lowry method, 57.5 and 59.0 mg protein/g RSM were hydrolyzed after Protease M and Protease N treatments, respectively. In gravimetric method, 80.0 and 85.4 mg protein/g RSM were hydrolyzed after Protease M and Protease N treatments. In Kjeldahl method, 67.43 and 70.43 mg protein/g RSM were hydrolyzed after Protamex and Protease N treatments, respectively. For synergistic effect, two or three effective commercial proteases (Protease M, Protease N and Protease A) were applied to RSM at one time. The highest hydrolysis of RSM protein was observed in both Lowry protein assay (80.3 mg protein/g RSM) and gravimetric methods (153.2 mg protein/g RSM) when three commercial proteases were applied at one time, suggesting the synergistic effect of those proteases.

쌀 부산물인 쌀 시럽박을 상업적으로 사용되는 8가지 protease로 최적화된 조건에서 단일 혹은 혼합 처리하여 수용성 단백질을 분리하였다. 이렇게 분리된 단백질을 Lowry, Kjeldahl 그리고 Gravimetric method 등 총 3가지 방법으로 분석을 한 결과 Protease M, Protease N, Protease A이 가장 높은 분해율을 나타내었다. 3가지 방법에서 모두 Protease M, Protease N, Protease A가 가장 높은 분해율을 나타내었지만, 특히 Gravimetric method의 경우 다른 두 분석방법에 비해 더 높은 단백질 함량을 보였다. 또한 위의 단일처리 결과를 바탕으로 3가지 protease를 혼합하여 처리하였을 때 단일처리와는 달리 상승효과가 나타나는 것을 알 수 있었다. 효소 처리를 하여 얻어진 단백질의 사이즈를 알아보기 위해 SDS-PAGE를 한 결과 어떠한 밴드도 형성이 되지 않았고, 이는 단백질이 마커의 최소사이즈 15 kDa보다 작은 것으로 생각할 수 있다. 아미노산분석의 경우 총 아미노산의 함량은 Protease M을 단일 처리하였을 때와 비슷함을 알 수 있었다. 이는 Protease M의 경우 단백질을 분해할 때 peptide와 amino acid를 동시에 생성하는 특성을 가지고 있지만 Protease N의 경우는 peptide만을 생성하는 특성을 가지고 있어서 상대적으로 Protease M을 처리하였을 때 총 아미노산의 함량이 Protease N에 비해 높음을 알 수 있었으며 이러한 특성으로 인해서 효소를 혼합하였을 때도 총 아미노산의 함량은 같은 것으로 판단된다. 효소 처리 후 생성된 총 단백질 함량은 효소를 혼합할수록 증가하였지만 아미노산의 함량은 단일과 비교하였을 때 비슷한 결과를 나타내었는데 이것 또한 Protease M의 특성으로 인해서 기인된 것으로 판단되며 상대적으로 효소를 혼합할수록 아미노산으로 분해되지 못한 polypeptide가 단일 처리에 비해 다량 존재 할 것으로 판단된다.

Keywords

References

  1. AOAC. 1995. Official Method of Analysis. Association of Official Analytical Chemists (NO. 993.13), Arlington, VA, USA.
  2. Bandyopadhyay, K., G. Misra, and S. Ghosh. 2008. Preparation and characterization of protein hydrolysates from Indian defatted rice bran meal. J. Oleo. Sci. 57, 47-52. https://doi.org/10.5650/jos.57.47
  3. Cho, S. Y., J. W. Park, and C. Rhee. 1998. Edible films from protein concentrates of rice wine meal. Korean J. Food Sci. Technol. 30, 1097-1106
  4. Cho, M. K., S. H. Kim, and M. Y. Kang. 2008. Application of rice polishing by-products to processed rice food (I). J. East Asian Soc. Dietary Life 18, 361-367
  5. Cho, M. K., M. H. Kim, and M. Y. Kang. 2008. Application of rice polishing by-products to processed rice food (II). J. East Asian Soc. Dietary Life 18, 331-336
  6. FAO. 1998. FAO production Yearbook, Vol. 41, Food and Agriculture Organization of the United Nations, Rome.
  7. Faulds, C. B., J. A. Robertson, and K. W. Waldron. 2008. Effect of pH in the solubilization of brewer’s spent grain by microbial carbohydrases and proteases. J. Agric. Food Chem. 56, 7038-7043. https://doi.org/10.1021/jf800433c
  8. Gnanasambandam, R., N. S. Hettiarachchy, and M. Coleman. 1997. Mechanical and barrier properties of rice bran films. J. Food Sci. 62, 395-398. https://doi.org/10.1111/j.1365-2621.1997.tb04009.x
  9. Gnanasambandam, R. and N. S. Hettiarachchy. 1995. Protein concentrates from unstabilized and stabilized rice bran:preparation and properties. J. Food Sci. 60, 1066-1069. https://doi.org/10.1111/j.1365-2621.1995.tb06293.x
  10. Iiyama, K., T. B. T. Lam, and B. A. Stone. 1994. Covalent cross-links in the cell wall. Plant Physiol. 104, 315-320.
  11. Jang, K. H., W. W. Kang, and E. J. Kwak. 2010. The quality characteristics of pound cake prepared with rice bran powder. Korean J. Food Preserv. 17, 250-255.
  12. Kum, J. S., C. H. Lee, K. H. Baek, S. H. Lee, and H. Y. Lee. 1995. Influence of cultivar on rice starch and cooking properties. Korean J. Food Sci. Technol. 27, 365-369.
  13. Laemmli, U. K. 1970. Celavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227, 680-685. https://doi.org/10.1038/227680a0
  14. Lee, G. S. 2007. Enzymology. pp. 15-20, Daihak publishing company, Seoul, Korea.
  15. Lowry, O. H., N. J. Rosenbrough, A. L. Farr, and R. J. Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265-275.
  16. Morita, T. and S. Kiriyama. 1993. Mass production method for rice protein isolate and nutritional evaluation. J. Food Sci. 58, 1393-1396. https://doi.org/10.1111/j.1365-2621.1993.tb06190.x
  17. Otagiro, K., Y. Nosho, L. Shinoga, H. Fukui, and H. Okai. 1985. Studies on a model of bitter peptides including arginine, proline and phenyalanine residues. Agric. Biol. Chem. 49, 1019-1026. https://doi.org/10.1271/bbb1961.49.1019
  18. Park, D. J., K. H. Ku, and C. K. Mok. 1993. Microparticulation/Air classification of rice bran:Characteristics and Application. Korea Food Research Institute 25, 769-774.
  19. SAS Institute, Inc. 2002. SAS User’s Guide. Statistical Analysis Systems Institute, Cary, NC, USA.
  20. Sharif, M. K., M. S. Butt., F. M. Anjum, and H. Nawaz. 2009. Preparation of fiber and mineral enriched defatted rice bran supplemented cookies. Pakistan J. Nutrition. 8, 571-577. https://doi.org/10.3923/pjn.2009.571.577
  21. Shih, F. F. 1996. Edible films from rice protein concentrate and pullulan. Cereal Chem. 73, 406-409.
  22. Treimo, J., S. I. Aspmo, V. G. H. Eijsink, and S. J. Horn. 2008. Enzymatic solubilization of proteins in brewer’s spent grain. J. Agric. Food Chem. 56, 5359-5365. https://doi.org/10.1021/jf073317s
  23. Treimo, J., B. Westereng, S. J. Horn, P. Forssell, J. A. Robertson, C. B. Faulds, K. W. Waldron, J. Buchert, and G. H. Eijsink. 2009. Enzymatic solubilization of brewer’s spent grain by combined action of carbohydrases and peptidases. J. Agric. Food. Chem. 57, 3316-3324. https://doi.org/10.1021/jf803310f

Cited by

  1. Characteristics of protein from red crab (Chionoecetes japonicus) shell by commercial proteases vol.45, pp.5, 2012, https://doi.org/10.4163/kjn.2012.45.5.429
  2. Characteristics of Enzymatic Hydrolysates of Rice Bran and Rice Protein by Mixing Ratio and Hydrolysis Times vol.45, pp.10, 2016, https://doi.org/10.3746/jkfn.2016.45.10.1460