DOI QR코드

DOI QR Code

과일유래 시판 식초음료류의 휘발성 향기성분

Volatile Flavor Compounds in Commercial Vinegar Beverages Derived from Fruits

  • 정은정 (창원대학교 식품영양학과) ;
  • 전선영 (창원대학교 식품영양학과) ;
  • 백정화 (창원대학교 식품영양학과) ;
  • 차용준 (창원대학교 식품영양학과)
  • Jeong, Eun-Jeong (Department of Food and Nutrition, Changwon National University) ;
  • Jeon, Seon-Young (Department of Food and Nutrition, Changwon National University) ;
  • Baek, Jeong-Hwa (Department of Food and Nutrition, Changwon National University) ;
  • Cha, Yong-Jun (Department of Food and Nutrition, Changwon National University)
  • 투고 : 2011.01.06
  • 심사 : 2011.02.08
  • 발행 : 2011.02.28

초록

식초는 동서양의 대표적인 발효식품으로 조미용뿐만 아니라 건강기능식품 음료로써 잠재력을 가진 식품으로, 다양한 종류의 식초음료가 요구되고 있다. 따라서 본 연구는 시판 수입산 식초음료 3종(이탈리아산 발사믹식초음료-IVB, 일본산 포도블루베리식초음료-JVB, 일본산 유자폰즈-JYP) 및 국내산 1종(백포도식초음료-KWVB)의 휘발성 향기성분을 비교하여 다양한 식초음료개발에 대한 기초자료를 제시하고자 하였다. 분석결과 IVB 경우 총 62종의 화합물(산류 11종, 에스테르류 17종, 알콜류 10종, 알데히드류 8종, 테르펜류 3종, 방향족화합물 4종 및 케톤류 9종)이 검출되었다. 휘발성 화합물의 조성비율을 본다면 산류(61.3%), 에스테르류(11.7%) 및 케톤류(10.7%)가 대부분의 함량을 차지하였다. JVB는 총 55종 화합물(산류 7종, 에스테르류 8종, 알콜류 9종, 알데히드류 7종, 테르펜류 13종, 방향족화합물 7종, 케톤류 1종 및 기타 3종)로 산류 56.3%, 케톤류 15.7% 및 에스테르 8.97%로 IVB에 비해 전반적인 함량은 낮으나 유사한 조성비율 나타내었다. JYP의 경우 총 106종 화합물(산류 3종, 에스테르류 12종, 알콜류 8종, 알데히드류 7종, 테르펜류 63종, 방향족화합물 6종, 케톤류 2종 및 기타 5종)이 검출되었다. 휘발성 화합물의 조성비율을 본다면 유자로부터 기인되는 테르펜류화합물(79.6%)이 대부분의 함량을 나타내었다. KWV의 경우는 총 50종의 화합물(산류 10종, 에스테르류 10종, 알콜류 9, 알데히드류 8종, 테르펜류 2종, 방향족화합물 5종, 케톤류 4종 및 기타 2종)으로 산류 81% 및 케톤류 9.0%가 대부분의 함량을 나타내었다. KWVB 경우 다른 식초음료에 비해 산류의 함량이 높으나 다른 화합물의 함량은 낮고 조성비율도 낮게 나타났다. 와인을 원료하여 제조된 basamic식초음료에는 5가지 휘발성 향기성분인, 2-phenylethyl acetate (꽃향, 과일향), 2-phenylethanol (장미향), vitispirane (과일향), geranylacetone (fragrant향) 및 acetic acid가 주된 휘발성 향기성분으로 검출되었다.

This study compared volatile flavor profiles of 4 commercial vinegar beverages (Italian vinegar beverage (IVB), Japanese vinegar beverage (JVB), Japanese Yuzu-Ponz (JYP), and Korean white wine vinegar beverage (KWVB)). Flavor components of vinegar beverages (VBs) were determined using SPME/GC/MSD. The profiles of VBs were as follows; IVB (11 acids, 17 esters, 10 alcohols, 8 aldehydes, 3 terpenes, 4 aromatic hydrocarbons, 9 ketones), JVB (7 acids, 8 esters, 9 alcohols, 7 aldehydes, 13 terpenes, 7 aromatic hydrocarbons, 1 ketones, 3 miscellaneous compounds), JYP (3 acids, 12 esters, 8 alcohols, 7 aldehydes, 63 terpenes, 6 aromatic hydrocarbons, 2 ketones, 5 miscellaneous compounds), KWVB (10 acids, 10 esters, 9 alcohols, 8 aldehydes, 2 terpenes, 5 aromatic hydrocarbons, 4 ketones, 2 miscellaneous compounds). IVB and JVB showed similar flavor compositions (acids, ketones and esters in particular), whereas major components in JYP and KWVB were terpenes (79.6%) and acids (81.0%), respectively. Five compounds including 2-phenylethyl acetate (floral, fruity, sweet odor), 2-phenylethanol (floral, rose odor), vitispirane (fruity odor), geranylacetone (fragrant odor) and acetic acid were identified as major components in balsamic vinegar beverages.

키워드

참고문헌

  1. Belitz, H. D., W. Grosh, and P. Schieberle. 2009. Precursors of aroma compounds, pp. 241-243, In Belitz H. D., W. Grosh, and P. Schieberle (eds.), Food chemistry 3.8.4.4, Springer- Verlag, Heidelberg, Germany.
  2. Blanch, G. P., J. Tabera, J. Sanz, M. Herraiz, and G. Reglero. 1992. Volatile composition of vinegars. simultaneous distillation-extraction and gas chromatographic-mass spectormetric analysis. J. Agri. Food Chem. 40, 1046-1049. https://doi.org/10.1021/jf00018a027
  3. Cha, Y. J., H. Kim., S. Y. Park, S. J. Kim, and Y. J. Yoo. 2000. Identification of irradiation-induced volatile flavor compounds in beef. J. Korean Soc. Food Sci. Nutr. 29, 1050-1056.
  4. Chinnici, F., E. D. Guerrero, F. Sonni, N. Natali, R. N. Marin, and C. Riponi. 2009. Gas chromatography-mass spectrometry (GC-MS) characterization of volatile compounds in quality vinegars with protected european geographical indication. J. Agric. Food Chem. 57, 4784-4792. https://doi.org/10.1021/jf804005w
  5. Fischer, U., M. Strasser, and K. Gutzler. 2000. Impact of fermentation technology on the phenolic and volatile composition of German red wines. Int. J. Food Sci. Technol. 35, 81-94. https://doi.org/10.1046/j.1365-2621.2000.00365.x
  6. Flavors & Fragrances. 2008. SAFC supply $solutions^{TM}$, USA.
  7. Food World. 2008. Domestic food industry analysis: Food and food additives produced results. Food World 9, 124-128.
  8. Food World. 2008. Market trends of beverages. Food World 9, 38-45.
  9. Giordano, L., R. Calabrese, E. Davoli, and D. Rotilio. 2003. Quantitative analysis of 2-furfural and 5-methylfurfural in different Italian vinegars by headspace solid-phase microextraction coupled to gas chromatography-ass spectrometry using isotope dilution. J. Chromatography A 1017, 141-149. https://doi.org/10.1016/j.chroma.2003.08.029
  10. Gomez, M. J. and J. F. Cacho. 2007. Volatiles components of Zalema white wines. Food Chem. 100, 1464-1473. https://doi.org/10.1016/j.foodchem.2005.11.045
  11. Jackson, R. S. 2008. 6. Chemical constituents of grapes and wine, pp. 303-340, In Jackson, R. S. (ed). Principle and application of wine science. Charontec Ltd., Chennai, India.
  12. Jeong, Y. J. 2009. Current trends and future prospects in the Korean vinegar industry. Food Science and Industry 42, 52-59.
  13. Lee, K. O. 2008. Market trends of vinvegar beverages. Food World 9, 46-49.
  14. Lim, C. W. 2005. Beverage industry market. Marketing issues & Trend 43, 19-23.
  15. Morales, M. L., G. A. Gonz'alez, J. A. Casas, and A. Troncoso. 2001. Multivariate analysis of commercial and laboratory produced sherry wine vinegars: influence of acetification and aging. Eur. Food Res. Technol. 212, 676-682. https://doi.org/10.1007/s002170100301
  16. Morales, M. L., W. Tesfaye, Mc. Garcia-Parrilla, J. A. Casas, and A. M. Troncoso. 2002. Evolution of the aroma profile of sherry wine vinegars during an experimental aging in wood. J. Agric. Food Chem. 50, 3137-3178. https://doi.org/10.1021/jf011390r
  17. Natera, R., R. Castro, M. V. Garc'ia-Moreno, M. J. Hern'andez, and C. Garc'ia-Barroso. 2003. Chemometric studies of vinegars from different raw materials and processes of production. J. Agric. Food Chem. 51, 3345-3351. https://doi.org/10.1021/jf021180u
  18. Njoroge, S. M., H. Ukeda, and M. Sawamura. 1996. Changes in the volatile composition of Yuzu (Citrus junos Tanaka) cold-pressed oil during storage. J. Agric. Food Chem. 44, 550-556. https://doi.org/10.1021/jf950284k
  19. Ou, A. S. M. and R. C. Chang. 2009. Taiwan fruit vinegar, pp. 223-242, In Solieri L. and P. Giudici (eds.). Vinegar of world 14.4.5, Springer-Verlag, Italia.
  20. Palacio, V., M. Valacrcel, I. Caro, and L. Perez. 2002. Chemical and biochemical transformations during the industrial process of sherry vinegar aging. J. Agric. Food Chem 50, 4221-4225. https://doi.org/10.1021/jf020093z
  21. Picinelli, A., B. Suarez, J. Moreno, R. Rodriguez, L. C. Garcia, R. Bedrinana, R. Pando, and J. J. Mangas. 2000. Analytical techniques in the quality control and characterization of Austrian natural cider. Alimentaria (Madrid). 315, 129-136.
  22. Rural development administration. 2008. Agricultural products processing and storage. pp. 223-226.
  23. Swiegers, J. H., E. J. Bartowsky, P. A. Henschke, and I. S Pretorius. 2005. Yeast and bacterial modulation of wine aroma and flavour. Aust. J. Grape Wine Res. 11, 139-173. https://doi.org/10.1111/j.1755-0238.2005.tb00285.x
  24. Yoon, H. N., S. Y. Moon, and S. H. Song. 1998. Volatile compounds and sensory odor properties of commerical vinegars. Korean J. Food Sci Technol. 30, 299-305.
  25. Zeppa, G. M. Giordano, V. Gerbi, and G. Meglioli. 2002. Characterisation of volatile compounds in three acetification batteries used for the production of “Aceto Balsamico Tradizionale di Reggio Emilia”. Ital. J. Food Sci. 14, 248-266.
  26. Zhu, J., K. J. Park, and T. C. Baker. 2003. Identification of odors from overripe mango that attract vinegar flies, Drosophila melanogaster. J. Chemical Ecology 29, 899-909. https://doi.org/10.1023/A:1022931816351

피인용 문헌

  1. Comparative analysis of sensory profiles of commercial cider vinegars from Korea, China, Japan, and US by SPME/GC-MS, E-nose, and E-tongue vol.48, pp.5, 2016, https://doi.org/10.9721/KJFST.2016.48.5.430
  2. Characteristics of freeze-concentrated apple cider fermented using mixed culture of non-Saccharomyces and Saccharomyces cerevisiae Fermivin vol.25, pp.6, 2018, https://doi.org/10.11002/kjfp.2018.25.6.730