DOI QR코드

DOI QR Code

Cobalt chloride에 의해 유도되는 상피-중간엽 이행에서의 국소부착 단백질의 인산화의 역할 규명

Role of FAK Phosphorylation in Cobalt Chloride-Induced Epithelial-to-Mesenchymal-Like Transition

  • 남주옥 (경북대학교 생태환경보전학과)
  • Nam, Ju-Ock (Department of Ecological Environment Conservation, Kyungpook National University)
  • 투고 : 2010.11.29
  • 심사 : 2011.01.10
  • 발행 : 2011.02.28

초록

본 연구는 인간 폐암세포의 저산소 상태를 재현하기 위한 $CoCl_2$의 처리 조건을 최적화 하였고, 최적화 된 저산소 상태에서 인간 폐암세포의 암화 과정 및 기전을 규명하였다. 인간 폐암세포, A549와 H460에 500 ${\mu}M$ $CoCl_2$를 24시간 처리하였을 때 저산소 상태의 대표적인 전사인자, HIF-$1{\alpha}$의 발현이 증가함을 확인하였고 인간 폐암세포들의 성장에는 전혀 영향을 미치지 않음을 확인하였다. 또한 $CoCl_2$를 처리한 인간 폐암 세포에서 상피-중간엽 이행(epithelial-to-mesenchymal-like transition)의 대표적인 마커인 E-cadherin 발현의 감소와 ${\alpha}$-SMA의 증가를 확인하였고, 세포-세포 간 junction 부위가 깨어짐을 E-cadherin 형광염색 실험을 통하여 확인하였다. 더 나아가 $CoCl_2$를 처리한 인간 폐암 세포에서 상피-중간엽 이행의 분자적 기전을 밝히기 위해 세포벽에 존재하는 인테그린(integrin)의 발현을 웨스턴 블랏팅과 FACS분석을 통하여 알아본 결과, $CoCl_2$를 처리한 인간 폐암세포에서 인테그린 ${\beta}3$발현의 증가를 확인하였다. 뿐만 아니라, $CoCl_2$를 처리한 인간 폐암세포에서 인테그린 ${\beta}3$의 하부 신호전달 물질인 국소부착 카이네이즈(FAK)의 인산화가 증가함을 확인하였다. 상기의 결과로서, 국소부착 카이네이즈의 인산화를 저해함으로써 인간 폐암세포가 악성세포로 전이되는 것을 저해할 수 있을 것으로 기대 되어진다.

Hypoxia is a common condition found in a wide range of solid tumors and is often associated with metastasis and poor clinical outcomes. In the present study, we found that HIF-$1{\alpha}$ was induced by cobalt chloride (500 ${\mu}M$) treatment on human lung cancer cells, A549 and H460, for 24 hr. However, cobalt chloride (500 ${\mu}M$) did not affect cell proliferation of A549 and H460 in 48 hr. Cobalt chloride (500 ${\mu}M$) additionally induced epithelial-to-mesenchymal-like transition (EMT) such as reduced E-cadherin expression and increased ${\alpha}$-SMA expression. These results were confirmed by immunofluorecence experiment in H460 cells. E-cadherin was localized on the outer cell membrane. However, when the cells were treated with 500 ${\mu}M$ cobalt chloride for 24 hr, diffuse E-cadherin staining was observed, characteristic of a migratory mesenchymal phenotype. We also found that cobalt chloride induced integrin ${\beta}3$ expression and FAK phosphorylation in human lung cancer cells using western blotting and FACS anlaysis. Our data suggest that integrin ${\beta}3$-induced FAK phosphorylation may be developed into target molecules for blocking tumor metastasis.

키워드

참고문헌

  1. Ardyanto, T. D., M. Osaki, Y. Nagahama, K. Yamaga, N. Maeta, T. Tamura, and H. Ito. 2008. Down-regulation of cobalt-induced HIF-1alpha expression correlates with cell proliferation and apoptosis in human gastric carcinoma cells. Oncol. Rep. 19, 339-343.
  2. Avizienyte, E., and M. C. Frame. 2005. Src and FAK signaling controls adhesion fate and the epithelial-to-mesenchymal transition. Curr. Opin. Cell Biol. 17, 542-547. https://doi.org/10.1016/j.ceb.2005.08.007
  3. Benelli, R., S. Monteghirfo, R. Vene, F. Tosetti, and N. Ferrari. 2010. The chemopreventive retinoid 4HPR impairs prostate cancer cell migration and invasion by interfering with FAK/AKT/GSK3beta pathway and beta-catenin stability. Mol. Cancer 9, 142-155. https://doi.org/10.1186/1476-4598-9-142
  4. Chung, J., S. Yoon, K. Datta, R. E. Bachelder, and A. M. Mercurio. 2004. Hypoxia-induced vascular endothelial growth factor transcription and protection from apoptosis are dependent on alpha6beta1 integrin in breast carcinoma cells. Cancer Res. 64, 4711-4716. https://doi.org/10.1158/0008-5472.CAN-04-0347
  5. Corley, K. M., C. J. Taylor, and B. Lilly. 2005. Hypoxia-inducible factor 1a modulates adhesion, migration, and FAK phosphorylation in vascular smooth muscle cells. J. Cell Biochem. 96, 971-985. https://doi.org/10.1002/jcb.20559
  6. Finger, E. C. and A. J. Giaccia. 2010. Hypoxia, inflammation, and the tumor microenvironment in metastatic disease. Cancer Metastasis Rev. 29, 285-293. https://doi.org/10.1007/s10555-010-9224-5
  7. Guan, F., L. Schaffer, K. Handa, and S. I. Hakomori. 2010. Functional role of gangliotetraosylceramide in epithelial-to-mesenchymal transition process induced by hypoxia and by TGF-{beta}. FASEB J. 24, 4889-4903. https://doi.org/10.1096/fj.10-162107
  8. Guarino, M. 2010. Src signaling in cancer invasion. J. Cell Physiol. 223, 14-26.
  9. Lee, M., A. Lapham, M. Brimmell, H. Wilkinson, and G. Packharm. 2008. Inhibition of proteasomal degradation of Mcl-1 by cobalt chloride suppresses cobalt chloride-induced apoptosis in HCT116 colorectal cancer cells. Apoptosis 13, 972-982. https://doi.org/10.1007/s10495-008-0229-2
  10. Lee, S. H., Y. J. Lee, and H. J. Han. 2011. Role of hypoxia-induced fibronectin-integrin beta1 expression in embryonic stem cell proliferation and migration: Involvement of PI3K/Akt and FAK. J. Cell Physiol. 226, 484-493. https://doi.org/10.1002/jcp.22358
  11. Lu, X. and Y. Kang. 2010. Hypoxia and hypoxia-inducible factors (HIFs): master regulators of metastasis. Clin Cancer Res. 24, 5928-5935.
  12. Mandal, M., J. N. Myers, S. M. Lippman, F. M. Johnson, M. D. Williams, S. Rayala, K. Ohshiro, D. I. Rosenthal, R. S. Weber, G. E. Gallick, and A. K. EI-Naggar. 2008. Epithelial to mesenchymal transition in head and neck squamous carcinoma: association of Src activation with E-cadherin down-regulation, vimentin expression, and aggressive tumor features. Cancer 112, 2088-2100. https://doi.org/10.1002/cncr.23410
  13. Milani, M. and A. L. Harris. 2008. Targeting tumour hypoxia in breast cancer. Eur. J. Cancer 44, 2766-2773. https://doi.org/10.1016/j.ejca.2008.09.025
  14. Munoz-najar, U. M., K. M. Neurath, F. Vumbaca, and K. P. Claffey. 2006. Hypoxia stimulates breast carcinoma cell invasion through MT1-MMP and MMP-2 activation. Oncogene 25, 2379-2392. https://doi.org/10.1038/sj.onc.1209273
  15. Rohwer, N., M. Welzel, K. Daskalow, D. Pfander, B. Wiedenmann, K. Detjen, and T. Cramer. 2008. Hypoxia-inducible factor 1alpha mediates anoikis resistance via suppression of alpha5 integrin. Cancer Res. 68, 10113-10120. https://doi.org/10.1158/0008-5472.CAN-08-1839
  16. Ryu, M. H., H. M. Park, J. Chung, C. H. Lee, and H. R. Park. 2010. Hypoxia-inducible factor-1alpha mediates oral squamous cell carcinoma invasion via upregulation of alpha5 integrin and fibronectin. Biochem. Biophys. Res. Commun. 393, 11-15. https://doi.org/10.1016/j.bbrc.2010.01.060
  17. Sloan, E. K., N. Pouliot, K. L. Stanley, J. Chia, J. M. Moseley, D. K. Hards, and R. L. Anderson. 2006. Tumor-specific expression of alphavbeta3 integrin promotes spontaneous metastasis of breast cancer to bone. Breast Cancer Res. 8, R20. https://doi.org/10.1186/bcr1398
  18. Song, G., Q. F. Cai, Y. B. Mao, Y. L. Ming, S. D. Bao, and G. L. Ouyang. 2008. Osteopontin promotes ovarian cancer progression and cell survival and increases HIF-1alpha expression through the PI3-K/Akt pathway. Cancer Sci. 99, 1901-1907.
  19. Stemmer, V., B. De Craene, G. Berx, and J. Behrens. 2008. Snail promotes Wnt target gene expression and interacts with beta-catenin. Oncogene 27, 5075-5080. https://doi.org/10.1038/onc.2008.140
  20. Strutz, F., H. Okada, C. W. Lo, T. Danoff, R. L. Carone, J. E. Tomaszewski, and E. G. Nelson. 1995. Identification and characterization of a fibroblast marker: FSP1. J. Cell Biol. 130, 393-405. https://doi.org/10.1083/jcb.130.2.393
  21. Vuoriluoto, K., H. Haugen, S. Kiviluoto, J. P. Mpindi,J. Nevo, C. Gjerdrum, C. Tiron, J. B. Lorens, and J. Ivaska. 2010. Vimentin regulates EMT induction by Slug and oncogenic H-Ras and migration by governing Axl expression in breast cancer. Oncogene 8, Epub ahead of print.
  22. Wang, Y., V. N. Ngo, M. Marani, Y. Yang, G, Wright, L. M. Staudt, and J. Downward. 2010. Critical role for transcriptional repressor Snail2 in transformation by oncogenic RAS in colorectal carcinoma cells. Oncogene 29, 4658-4670. https://doi.org/10.1038/onc.2010.218
  23. Wang, Z., Y. Li, D. Kong, and F. H. Sarkar. 2010. The role of Notch signaling pathway in epithelial-mesenchymal transition (EMT) during development and tumor aggressiveness. Curr. Drug Targets 11, 745-751. https://doi.org/10.2174/138945010791170860
  24. Wietrzyk, J., B. Filip, M. Milczarek, D. Klopotowska, M. Maciejewska, K. Dabrowska, A. Kurzepa, S. Dzimira, J. Madej, and A. Kutner. 2008. The influence of 1,25-dihydroxyvitamin D3 and 1,24-dihydroxyvitamin D3 on alphavbeta3 integrin expression in cancer cell lines. Oncol. Rep. 20, 941-952.
  25. Yang, J. and Y. Liu. 2001. Dissection of key events in tubular epithelial to myofibroblast transition and its implications in renal interstitial fibrosis. Am. J. Pathol. 159, 1465-1475. https://doi.org/10.1016/S0002-9440(10)62533-3
  26. Yan, W., Y. Fu, D. Tian, J. Liao, M. Liu, B. Wang, L. Xia, Q. Zhu, and M. Luo. 2009. PI3 kinase/Akt signaling mediates epithelial-mesenchymal transition in hypoxic hepatocellular carcinoma cells. Biochem. Biophys. Res. Commun. 382, 631-636. https://doi.org/10.1016/j.bbrc.2009.03.088
  27. Yoon, S. O., S. Shin, and A. M. Mercurio. 2005. Hypoxia stimulates carcinoma invasion by stabilizing microtubules and promoting the Rab11 trafficking of the alpha6beta4 integrin. Cancer Res. 65, 2761-2769. https://doi.org/10.1158/0008-5472.CAN-04-4122
  28. Zhang, L. and R. P. Hill. 2007. Hypoxia enhances metastatic efficiency in HT1080 fibrosarcoma cells by increasing cell survival in lungs, not cell adhesion and invasion. Cancer Res. 67, 7789-7797. https://doi.org/10.1158/0008-5472.CAN-06-4221