DOI QR코드

DOI QR Code

Toxins and Antibiotic Resistance of Methicillin-Resistant Staphylococcus aureus Isolated from Clinical Specimens

임상검체로부터 분리된 methicillin 내성 Staphylococcus aureus의 독소 및 항생제 내성

  • Baik, Keun-Sik (Department of Biology, College of Life Science and Natural Resources, Sunchon National University) ;
  • Ki, Gwang-Seo (Department of Biology, College of Life Science and Natural Resources, Sunchon National University) ;
  • Choe, Han-Na (Department of Biology, College of Life Science and Natural Resources, Sunchon National University) ;
  • Park, Seong-Chan (Department of Biology, College of Life Science and Natural Resources, Sunchon National University) ;
  • Koh, Eun-Cho (Department of Biology, College of Life Science and Natural Resources, Sunchon National University) ;
  • Kim, Hyung-Rak (Department of Biology, College of Life Science and Natural Resources, Sunchon National University) ;
  • Seong, Chi-Nam (Department of Biology, College of Life Science and Natural Resources, Sunchon National University)
  • Received : 2010.10.28
  • Accepted : 2010.11.28
  • Published : 2011.02.28

Abstract

Seventy five methicillin- resistant Staphylococcus aureus (MRSA) strains and 24 methicillin- susceptible S. aureus (MSSA) were isolated from clinical specimens obtained from a hospital in Suncheon, Jeonnam province, Korea, from July to December, 2009. Antibiotic resistance was determined using the disc diffusion method. Genes encoding enterotoxin (SE), toxic shock syndrome toxin-1 (TSST-1), exfoliative toxin (ET) and Panton-Valentine leukocidin (PVL) were detected by multiplex PCR-mediated amplification using specific primers. Sixty (80%) MRSA isolates possessed either one or more toxin genes and the most common pattern that coexisted in MRSA was seb, sec, seg, sei and tst (22.7%) followed by coexistence of sec, seg, sei and tst genes (18.7%). Gene pvl encoding leukocidin was not found. Significant correlation between the production of sec, seg, sei and tst genes was found. MRSAs were resistant to erythromycin (89% of the isolates), gentamicin (70.7%), ciprofloxacin (69.3%), clindamycin (61.3%) and tetracycline (58.7%), while MSSAs were susceptible to the antibiotics with the exception of erythromycin. Toxin genes seb, sec and tst were related to the tetracycline resistance of MRSA.

2009년 7월부터 12월까지 순천 소재 한 병원에 내원한 환자의 검체로부터 methicillin 내성 Staphylococcus aureus (MRSA) 75균주와 methicillin 감수성 S. aureus (MSSA) 24균주를 분리하였다. 분리균의 항생제 감수성 조사는 디스크 확산법을 사용하여 측정하였다. 분리균의 독소 유전자 보유는 multiplex PCR을 이용하여 장독소(enterotoxin; SE), 독성 쇼크 증상 독소 1(toxic shock syndrome toxin-1; TSST-1), 피부박탈성 독소(exfoliative toxin; ET) 및 백혈구 용해 독소(Panton-Valentine leukocidin; PVL) 유전자를 검출하였다. 분리된 MRSA 60개 균주는 1개 혹은 2개의 독소 유전자를 가지고 있으며, 22.7%의 균주가 seb, sec, seg, sei와 tst 유전자를 동시에 보유하고 있었으며 18.7%는 sec, seg, sei와 tst 유전자를 동시에 보유하고 있었다. 백혈구 용해독소를 암호하는 pvl 유전자는 검출되지 않았다. MRSA는 sec, seg, sei와 tst 유전자 보유에 높은 상관성을 보였다. MRSA 균주들은 erythromycin (분리균의 89%), gentamicin (70.7%), ciprofloxacin (69.3%), clindamycin (61.3%)과 tetracycline (58.7%)에 내성이 높은 반면, MSSA 균주들은 erythromycin를 제외한 다른 항생제에는 민감하였다. 독소 유전자 seb, sec와 tst는 tetracycline 내성과 높은 상관관계가 있었다.

Keywords

References

  1. Ahn, J. Y., W. B. Kim, D. W. Lee, K. Lee, S. H. Choi, I. S. Kim, and C. H. Seo. 1999. A study of the mecI, mecA and femA genes of methicillin-resistant Staphylococci. Korean J. Clin. Pathol. 19, 62-69.
  2. Akcam, F. Z., G. B. Tinaz, O. Kaya, A. Tigli, E. Ture, and S. Hosoglu. 2009. Evaluation of methicillin resistance by cefoxitin disk diffusion and PBP2a latex agglutination test in mecA-positive Staphylococcus aureus, and comparison of mecA with femA, femB, femX positivities. Microbiol. Res. 164, 400-403. https://doi.org/10.1016/j.micres.2007.02.012
  3. Bergdoll, M. S. 1983. Enterotoxins, pp. 559-598, In Easton, C. S. F. and C. Adlam (eds.), Staphylococci and staphylococcal infections. Academic Press, London, United Kingdom.
  4. Chambers, H. F. 1997. Methicillin resistance in staphylococci: molecular and biochemical basis and clinical implications. Clin. Microbiol. Rev. 10, 781-791.
  5. Chini, V., G. Dimitracopoulos, and I. Spiliopoulou. 2006. Occurrence of the enterotoxin gene cluster and the toxic shock syndrome toxin 1 gene among clinical isolates of methicillin-resistant Staphylococcus aureus is related to clonal type and agr group. J. Clin. Microbiol. 44, 1881-1883. https://doi.org/10.1128/JCM.44.5.1881-1883.2006
  6. Choe, H. N., C. Park, H. R. Kim, K. S. Baik, S. N. Kim, and C. N. Seong. 2010. Characteristics and antibiotic susceptibility of imipenem-resistant clinical isolates producing carbapenemase. J. Life Sci. 20, 1214-1220. https://doi.org/10.5352/JLS.2010.20.8.1214
  7. CLSI. 2009. Performance standards for antimicrobial susceptibility testing. 19th Informational Supplement. CLSI document M100-S19 (ISBN 1-56238-690-5). Wayne, PA: Clinical and Laboratory Standards Institute.
  8. Diep, B. A., H. A. Carleton, R. F. Chang, G. F. Sensabaugh, and F. Perdreau-Remington. 2006. Roles of 34 virulence genes in the evolution of hospital- and community-associated strains of methicillin-resistant Staphylococcus aureus. J. Infect. Dis. 193, 1495-1503. https://doi.org/10.1086/503777
  9. Georgopapadakou, N. H., S. A. Smith, and D. P. Bonner. 1982. Penicillin-binding proteins in a Staphylococcus aureus strain resistant to specific ${\beta}$-lactam antibiotics. Antimicrob. Agents Chemother. 22, 172-175. https://doi.org/10.1128/AAC.22.1.172
  10. Lina, G., Y. Piemont, F. Godail-Gamot, M. Bes, M. O. Peter, V. Gauduchon, F. Vandenesch, and J. Etienne. 1999. Involvement of Panton-Valentine Leukocidin-producing Staphylococcus aureus in primary skin infections and pneumonia. Clin. Infect. Dis. 29, 1128-1132. https://doi.org/10.1086/313461
  11. Ho, G., W. H. Campbell, M. S. Bergdoll, and E. Carlson. 1989. Production of a toxic shock syndrome toxin variant by Staphylococcus aureus strains associated with sheep, goats, and cows. J. Clin. Microbiol. 27, 1946-1948.
  12. Iandolo, J. J. 1989. Genetic analysis of extracellular toxins of Staphylococcus aureus. Annu. Rev. Microbiol. 43, 375-402. https://doi.org/10.1146/annurev.mi.43.100189.002111
  13. Jackson, M. P. and J. J. Iandolo. 1986. Sequence of the exfoliative toxin B gene of Staphylococcus aureus. J. Bacteriol. 167, 726-728.
  14. Jevons, M. P. 1961. "Celbenin"-resistant staphylococci. Br. Med. J. 1, 124-125.
  15. Jung, H. J., J. I. Cho, E. S. Song, J. J. Kim, and K. S. Kim. 2005. PCR detection of virulence genes encoding coagulase and other toxins among clinical methicillin-resistant Staphylococcus aureus. J. Microbiol. Biotechnol. 33, 207-214.
  16. Katsuda, K., E. Hata, H. Kobayashi, M. Kohmoto, K. Kawashima, H. Tsunemitsu, and M. Eguchi. 2005. Molecular typing of Staphylococcus aureus isolated from bovine mastitic milk on the basis of toxin genes and coagulase gene polymorphisms. Vet. Microbiol. 105, 301-305. https://doi.org/10.1016/j.vetmic.2004.12.004
  17. Kim, J. S., H. S. Kim, W. Song, H. C. Cho, K. M. Lee, and E. C. Kim. 2007. Molecular epidemiology of methicillin-resistant Staphylococcus aureus isolates with toxic shock syndrome toxin and staphylococcal enterotoxin C genes. Korean J. Lab. Med. 27, 118-123. https://doi.org/10.3343/kjlm.2007.27.2.118
  18. Kim, J. S, W. Song, H. S. Kim, H. C. Cho, K. M. Lee, M. S. Choi, and E. C. Kim. 2006. Association between the methicillin resistance of clinical isolates of Staphylococcus aureus, their staphylococcal cassette chromosome mec (SCCmec) subtype classification, and their toxin gene profiles. Diagn. Microbiol. Infect. Dis. 56, 289-295. https://doi.org/10.1016/j.diagmicrobio.2006.05.003
  19. Kim, Y. J., D. S. Jeon, and J. R. Kim. 2001. Molecular epidemiologic analysis of methicillin-resistant Staphylococcus aureus using pulsed-field gel electrophoresis. Korean J. Clin. Pathol. 21, 122-128.
  20. Lee, C. Y., J. J. Schmidt, A. D. Johnson-Winegar, L. Spero, and J. J. Iandolo. 1987. Sequence determination and comparison of the exfoliative toxin A and toxin B genes from Staphylococcus aureus. J. Bacteriol. 169, 3904-3909.
  21. Lee, H. J., Y. S. Kim, J. S. Kim, Y. H. Cho, K. G. Lee, J. T. Suh, and S. H. Cha. 2001. A study of mecA and femA of methicillin-resistant Staphylococcus aureus (MRSA) strains isolated from clinical specimens. Korean J. Clin. Pathol. 21, 45-48.
  22. Lina, G., Y. Piemont, F. Godail-Gamot, M. Bes, M. O. Peter, V. Gauduchon, F. Vandenesch, and J. Etienne. 1999. Involvement of Panton-Valentine leukocidin-producing Staphylococcus aureus in primary skin infections and pneumonia. Clin. Infect. Dis. 29, 1128-1132. https://doi.org/10.1086/313461
  23. Looseth, A., S. Loncarevic, and K. G. Berdal. 2004. Modified multiplex PCR method for detection of pyrogenic exotoxin genes in staphylococcal isolates. J. Clin. Microbiol. 42, 3869-3872. https://doi.org/10.1128/JCM.42.8.3869-3872.2004
  24. Marrack, P. and J. Kappler. 1990. The staphylococcal enterotoxins and their relatives. Science 248, 705. https://doi.org/10.1126/science.2185544
  25. Mehrotra, M., G. Wang, and W. M. Johnson. 2000. Multiplex PCR for detection of genes for Staphylococcus aureus enterotoxins, exfoliative toxins, toxic shock syndrome toxin 1, and methicillin resistance. J. Clin. Microbiol. 38, 1032-1035.
  26. Monday, S. R. and G. A. Bohach. 1999. Use of multiplex PCR to detect classical and newly described pyrogenic toxin genes in staphylococcal isolates. J. Clin. Microbiol. 37, 3411-3414.
  27. Novick, R. P., P. Schlievert, and A. Ruzin. 2001. Pathogenicity and resistance islands of staphylococci. Microbes Infect. 3, 585-594. https://doi.org/10.1016/S1286-4579(01)01414-9
  28. Oliveira, D. C. and H. De Lencastre. 2002. Multiplex PCR strategy for rapid identification of structural types and variants of the mec element in methicillin-resistant Staphylococcus aureus. Antimicrob. Agents Chemother. 46, 2155-2161. https://doi.org/10.1128/AAC.46.7.2155-2161.2002
  29. Omoe, K., M. Ishikawa, Y. Shimoda, D. L. Hu, S. Ueda, and K. Shinagawa. 2002. Detection of seg, seh, and sei genes in Staphylococcus aureus isolates and determination of the enterotoxin productivities of S. aureus isolates harboring seg, seh, or sei genes. J. Clin. Microbiol. 40, 857-862. https://doi.org/10.1128/JCM.40.3.857-862.2002
  30. Park, S. H., Y. H. Jang, H. Sung, M. N. Kim, J. S. Kim, and Y. J. Park. 2009. Performance evaluation of BD geneOhm MRSA PCR assay for detection of nasal colonization of methicillin-resistant Staphylococcus aureus at endemic intensive care units. Korean J. Lab. Med. 29, 439-447. https://doi.org/10.3343/kjlm.2009.29.5.439
  31. Peacock, S. J., C. E. Moore, A. Justice, M. Kantzanou, L. Story, K, Mackie, G. O’Neill, and N. P. J. Day. 2002. Virulent combinations of adhesin and toxin genes in natural populations of Staphylococcus aureus. Infect. Immun. 70, 4987-4996. https://doi.org/10.1128/IAI.70.9.4987-4996.2002
  32. Smibert, R. M. and N. R. Krieg. 1994. Methods for General and Molecular Bacteriology, pp. 607-654, In Gebhardt, P., R. G. E. Murray, W. A. Wood, and N. R. Krieg (eds.), Washington, DC: American Society for Microbiology.
  33. Tsen, H. Y., G. K. Yu, and H. H. Hu. 1997. Comparison of type A enterotoxigenic Staphylococcus aureus strains isolated from geographically far distant locations by pulsed field gel electrophoresis. J. Appl. Microbiol. 82, 485-493. https://doi.org/10.1046/j.1365-2672.1997.00139.x
  34. Zschock, M., K. RiBe, and J. Sommerhauser. 2004. Occurrence and clonal relatedness of sec/tst-gene positive Staphylococcus aureus isolates of quartermilk samples of cows suffering from mastitis. Lett. Appl. Microbiol. 38, 493-498. https://doi.org/10.1111/j.1472-765X.2004.01519.x

Cited by

  1. The Correlation between Toxin Genotype and Antibiotic Resistance in Methicillin ResistantStaphylococcus aureusIsolated from Clinical Specimen of Intensive Care Unit vol.48, pp.3, 2016, https://doi.org/10.15324/kjcls.2016.48.3.202
  2. Antimicrobial susceptibility and pathogenic genes ofStaphylococcus aureusisolated from the oral cavity of patients with periodontitis vol.45, pp.6, 2015, https://doi.org/10.5051/jpis.2015.45.6.223
  3. Virulence Factors of Staphylococcus aureus Isolated from Korean Pork bulgogi: Enterotoxin Production and Antimicrobial Resistance vol.35, pp.4, 2015, https://doi.org/10.5851/kosfa.2015.35.4.502