DOI QR코드

DOI QR Code

Plant Cell Contact-Dependent Virulence Regulation of hrp Genes in Pseudomonas syringae pv. tabaci 11528

Pseudomonas syringae pv. tabaci 에서 식물세포접촉에 의한 병원성 유전자의 조절

  • Lee, Jun-Seung (Department of Microbiology, College of Natural Science, Pusan National University) ;
  • Cha, Ji-Young (Department of Microbiology, College of Natural Science, Pusan National University) ;
  • Baik, Hyung-Suk (Department of Microbiology, College of Natural Science, Pusan National University)
  • 이준승 (부산대학교 미생물학과) ;
  • 차지영 (부산대학교 미생물학과) ;
  • 백형석 (부산대학교 미생물학과)
  • Received : 2011.02.07
  • Accepted : 2011.02.23
  • Published : 2011.02.28

Abstract

The hrp gene cluster in the plant pathogen Pseudomonas syringae is a key determinant of pathogenicity. Recent studies have demonstrated that specific host cell induction of the Ralstonia solanacearum hrp gene cluster is controlled by the PrhA (plant regulator of hrp) receptor. To characterize the role that P. syringae PrhA plays in the virulence of plant cells, a prhA homolog was isolated from P. syringae pv. tabaci and a $\Delta$prhA mutant was constructed by allelic exchange. The $\Delta$prhA mutant had reduced virulence in the host plant, and co-culture of P. syringae pv. tabaci and plant cell suspensions induced a much higher level of hrpA gene transcription than culture in hrp-inducing minimal medium. These results indicate that PrhA of P. syringae is a putative pathogen-plant cell contact sensor, therefore, we used a hrpA-gfp reporter fusion to monitor the in situ expression of PrhA. The results of this study demonstrated that PrhA induces hrp gene expression in P. syringae pv. tabaci in the presence of plant cells.

Pseudomonas syringae pv. tabaci는 숙주인 담배에 감염하여 들불병(wild fire)을 일으키는 식물 병원성 세균이다. 이 세균의 pathogenicity island (PAI)는 Type III secretion system 및 병원성 유전자들을 암호화하고 있으며, 병원성 조절에 있어 핵심적인 역할을 한다. 최근 식물 병원성 세균인 Ralstonia solanacearum에서 식물 세포 접촉을 매개로 하여 hrp gene cluster를 양성조절하는 PrhA (plant regulator of hrp) receptor가 발견되었다. 본 연구에서는 P. syringae에서 식물세포에 의해 hrp 유전자가 유도되는지 확인하기 위해, prhA 유사체를 동정하고 PrhA 결실돌연변이주(BL11)를 구축하였다. BL11은 숙주 감염 실험에서 병원성이 현저히 감소하였고, 식물 세포현탁액에서 hrpA 유전자의 발현수준이 hrp 유도배지에서 보다 3배 더 높게 나타났다. 이러한 결과들을 근거로 PrhA가 식물세포접촉에 의한 조절에 중요한 역할을 한다는 것을 확인하였으며, hrpA-gfp reporter fusion을 사용하여 이를 다시 검증하였다.

Keywords

References

  1. Aldon, D., B. Brito, C. Boucher, and S. Genin. 2000. A bacterial sensor of plant cell contact controls the transcriptional induction of Ralstonia solanacearum pathogenicity genes. EMBO J. 19, 2304-2314. https://doi.org/10.1093/emboj/19.10.2304
  2. Alfano, J. R., A. O. Charkowski, W. L. Deng, J. L. Badel, T. Petnicki-Ocwieja, K. van Dijk, and A. Collmer. 2000. The Pseudomonas syringae Hrp pathogenicity island has a tripartite mosaic structure composed of a cluster of type III secretion genes bounded by exchangeable effector and conserved effector loci that contribute to parasitic fitness and pathogenicity in plants. Proc. Natl. Acad. Sci. USA 97, 4856-4861. https://doi.org/10.1073/pnas.97.9.4856
  3. Arlat, M., C. L. Gough, C. E. Barber, C. Boucher, and M. J. Daniels. 1991. Xanthomonas campestris contains a cluster of hrp genes related to the larger hrp cluster of Pseudomonas solanacearum. Mol. Plant-Microbe Interact. 4, 593-601. https://doi.org/10.1094/MPMI-4-593
  4. Bauer, D. W., A. J. Bogdanove, S. V. Beer, and A. Collmer. 1994. Erwinia chrysanthemi hrp genes and their involvement in soft rot pathogenesis and elicitation of the hypersensitive response. Mol. Plant-Microbe Interact. 7, 573-581. https://doi.org/10.1094/MPMI-7-0573
  5. Bogdanove, A. J., S. V. Beer, U. Bonas, C. A. Boucher, A. Collmer, D. L. Coplin, G. R. Cornelis, H. C. Huang, S. W. Hutcheson, N. J. Panopoulos, and F. Van Gijsegem. 1996. Unified nomenclature for broadly conserved hrp genes of phytopathogenic bacteria. Mol. Microbiol. 20, 681-683. https://doi.org/10.1046/j.1365-2958.1996.5731077.x
  6. Boucher, C. A., F. Van Gijsegem, P. A. Barberis, M. Arlat, and C. Zischek. 1987. Pseudomonas solanacearum genes controlling both pathogenicity on tomato and hypersensitivity on tobacco are clustered. J. Bacteriol. 169, 5626-5632.
  7. Cha, J. Y., J. S. Lee, J. I. Oh, J. W. Choi, and H. S. Baik. 2008. Functional analysis of the role of Fur in the virulence of Pseudomonas syringae pv. tabaci 11528: Fur controls expression of genes involved in quorum-sensing. Biochem. Biophys. Res. Commun. 366, 281-287. https://doi.org/10.1016/j.bbrc.2007.11.021
  8. Collmer, A., J. L. Badel, A. O. Charkowski, W. L. Deng, D. E. Fouts, A. R. Ramos, A. H. Rehm, D. M. Anderson, O. Schneewind, K. van Dijk, and J. R. Alfano. 2000. Pseudomonas syringae Hrp type III secretion system and effector proteins. Proc. Natl. Acad. Sci. USA 97, 8770-8777. https://doi.org/10.1073/pnas.97.16.8770
  9. Deng, W. L., A. H. Rehm, A. O. Charkowski, C. M. Rojas, and A. Collmer. 2003. Pseudomonas syringae exchangeable effector loci: sequence diversity in representative pathovars and virulence function in P. syringae pv. syringae B728a. J. Bacteriol. 185, 2592-2602. https://doi.org/10.1128/JB.185.8.2592-2602.2003
  10. Frederick, R. D., M. Ahmad, D. R. Majerczak, A. S. Arroyo-Rodriguez, S. Manulis, and D. L. Coplin. 2001. Genetic organization of the Pantoea stewartii subsp. stewartii hrp gene cluster and sequence analysis of the hrpA, hrpC, hrpN, and wtsE operons. Mol. Plant-Microbe Interact. 14, 1213-1222. https://doi.org/10.1094/MPMI.2001.14.10.1213
  11. Gay, P., D. Le Coq, M. Steinmetz, T. Berkelman, and C. I. Kado. 1985. Positive selection procedure for entrapment of insertion sequence elements in gram-negative bacteria. J. Bacteriol. 164, 918-921.
  12. Gober, J. W. and L. Shapiro. 1992. A delvelopmentally regulated Caulobacter flagellar promoter is activated by 3' enhancer and IHF binding elements. Mol. Biol. Cell 3, 913-926. https://doi.org/10.1091/mbc.3.8.913
  13. Hirano, S. S. and C. D. Upper. 2000. Bacteria in the leaf ecosystem with emphasis on Pseudomonas syringae-a pathogen, ice nucleus, and epiphyte. Microbiol. Mol. Biol. Rev. 64, 624-653. https://doi.org/10.1128/MMBR.64.3.624-653.2000
  14. Huynh, T. V., D. Dahlbeck, and B. J. Staskawicz. 1989. Bacterial blight of soybean: regulation of a pathogen gene determining host cultivar specificity. Science 245, 1374-1377. https://doi.org/10.1126/science.2781284
  15. Keen, N. T., S. Tamaki, D. Kobayashi, and D. Trollinger. 1988. Improved broad-host-range plasmids for DNA cloning in gram-negative bacteria. Gene 70, 191-197. https://doi.org/10.1016/0378-1119(88)90117-5
  16. Lee, J. K. and S. Kaplan. 1995. Transcriptional regulation of puc operon expression in Rhodobacter sphaeroides. Analysis of the cis-acting downstream regulatory sequence. J. Biol. Chem. 270, 20453-20458. https://doi.org/10.1074/jbc.270.35.20453
  17. Lenz, O., E. Schwartz, J. Dernedde, M. Eitinger, and B. Friedrich. 1994. The Alcaligenes eutrophus H16 hoxX gene participates in hydrogenase regulation. J. Bacteriol. 176, 4385-4393.
  18. Lindgren, P. B., R. C. Peet, and N. J. Panopoulos. 1986. Gene cluster of Pseudomonas syringae pv. "phaseolicola" controls pathogenicity of bean plants and hypersensitivity of nonhost plants. J. Bacteriol. 168, 512-522.
  19. Lindgren, P. B. 1997. The role of hrp genes during plant-bacterial interactions. Annu. Rev. Phytopathol. 35, 129-152. https://doi.org/10.1146/annurev.phyto.35.1.129
  20. Marenda, M., B. Brito, D. Callard, S. Genin, P. Barberis, C. Boucher, and M. Arlat. 1998. PrhA controls a novel regulatory pathway required for the specific induction of Ralstonia solanacearum hrp genes in the presence of plant cells. Mol. Microbiol. 27, 437-453. https://doi.org/10.1046/j.1365-2958.1998.00692.x
  21. Miller, J. H. 1972. Experiments in molecular genetics. 1972. New York: Cold Spring Harbor.
  22. Noel, L., F. Thieme, D. Nennstiel, and U. Bonas. 2002. Two novel type III-secreted proteins of Xanthomonas campestris pv. vesicatoria are encoded within the hrp pathogenicity island. J. Bacteriol. 184, 1340-1348. https://doi.org/10.1128/JB.184.5.1340-1348.2002
  23. Quinones, B., G. Dulla, and S. E. Lindow. 2005. Quorum sensing regulates exopolysaccharide production, motility, and virulence in Pseudomonas syringae. Mol. Plant-Microbe Interact. 18, 682-693. https://doi.org/10.1094/MPMI-18-0682
  24. Rahme, L. G., M. N. Mindrinos, and N. J. Panopoulos. 1992. Plant and environmental sensory signals control the expression of hrp genes in Pseudomonas syringae pv. phaseolicola. J. Bacteriol. 174, 3499-3507.
  25. Richael, C. and D. Gilchrist. 1999. The hypersensitive response: A case of hold or fold? Physiol. Mol. Plant Pathol. 55, 5-12. https://doi.org/10.1006/pmpp.1999.0209
  26. Salch, Y. P. and P. D. Shaw. 1988. Isolation and characterization of pathogenicity genes of Pseudomonas syringae pv. tabaci. J. Bacteriol. 170, 2584-2591.
  27. Sambrook, J. and D. W. Russell. 2001. Molecular Cloning: a laboratory manual, third eds. 2001. New York: Cold Spring Harbor.
  28. Schwyn, B. and J. B. Neilands. 1987. Universal chemical assay for the detection and determination of siderophores. Anal. Biochem. 160, 47-56. https://doi.org/10.1016/0003-2697(87)90612-9
  29. Simon, R., U. Priefer, and A. Puhler. 1983. A broad host range mobilization system for In vivo genetic engineering: Transposon mutagenesis in Gram negative bacteria. Nat. Biotechnol. 1, 784-791. https://doi.org/10.1038/nbt1183-784
  30. Xiao, Y., Y. Lu, S. Heu, and S. W. Hutcheson. 1992. Organization and environmental regulation of the Pseudomonas syringae pv. syringae 61 hrp cluster. J. Bacteriol. 174, 1734-1741.
  31. Xiao, Y., S. Heu, J. Yi, Y. Lu, and S. W. Hutcheson. 1994. Identification of a putative alternate sigma factor and characterization of a multicomponent regulatory cascade controlling the expression of Pseudomonas syringae pv. syringae Pss61 hrp and hrmA genes. J. Bacteriol. 176, 1025-1036.

Cited by

  1. A LuxR-type Transcriptional Regulator, PsyR, Coordinates Regulation of Pathogenesis-related Genes in Pseudomonas syringae pv. tabaci vol.25, pp.2, 2015, https://doi.org/10.5352/JLS.2015.25.2.136
  2. GacA directly regulates expression of several virulence genes in Pseudomonas syringae pv. tabaci 11528 vol.417, pp.2, 2012, https://doi.org/10.1016/j.bbrc.2011.11.124