DOI QR코드

DOI QR Code

온도 제한조건을 고려한 이동통신 모듈의 히트싱크 최적설계

Design Optimization of a Heat Sink for Mobile Telecommunication Module Satisfying Temperature Limits

  • 정승현 (한양대학교 기계공학과) ;
  • 정현수 (한양대학교 기계 및 산업공학과) ;
  • 이용빈 (한양대학교 기계공학과) ;
  • 최동훈 (한양대학교 최적설계신기술연구센터)
  • Jeong, Seung-Hyun (Graduate School of Mechanical Engineering, Hanyang Univ.) ;
  • Jeong, Hyun-Su (Dept. of Mechanical and Industrial Engineering, Hanyang Univ.) ;
  • Lee, Yong-Bin (Graduate School of Mechanical Engineering, Hanyang Univ.) ;
  • Choi, Dong-Hoon (The Center of Innovation Design Optimization Technology (iDOT), Hanyang Univ.)
  • 투고 : 2010.07.20
  • 심사 : 2010.12.10
  • 발행 : 2011.02.01

초록

최근 이동통신 가입자의 증가로 인해 기지국의 수요도 증가하게 되었다. 하지만 기지국 설치 장소의 부족으로 인해 이동통신모듈의 크기가 소형화 되어야 할 필요성이 생겼다. 이동통신모듈의 소형화를 위해서는 모듈 겉면에 부착된 히트싱크의 크기가 소형화 되어야 한다. 또한 모듈의 열적 안정성을 보장하기 위해 설치된 전자부품의 온도가 허용온도보다 낮아야 한다. 이를 위해 상용 PIDO(Process Integration and Design Optimization) 툴인 PIAnO와 전산유체역학 프로그램인 FLOTHERM을 사용하여 전자부품의 온도를 허용온도보다 낮게 유지시키면서 히트싱크의 부피를 최소화하였다. 그 결과, 이동통신 모듈에 설치된 전자부품의 허용온도를 만족하면서 모듈의 부피를 41.9% 감소시킬 수 있었다.

As the number of mobile subscribers has increased recently, the demand for more number of base stations has increased. However, because of the shortage of sites for constructing base stations, a mobile communication module needs to be small in size. To minimize the size of the module, the size of the heat sink attached to the outside of the module should be minimized. Furthermore, the temperature of each electronic component of the module should be lower than the allowable temperature so that thermal stability can be maintained. A commercial PIDO (process integration and design optimization) tool PIAnO and a commercial CFD (computational fluid dynamics) tool FLOTHERM are used to minimize the size of the module while the constraints on the temperatures of the twelve electronic components are satisfied. As a result of design optimization, the volume of the heat sink is reduced by 41.9% while all the constraints on the temperature of the twelve electronic components of the module are satisfied.

키워드

참고문헌

  1. Culham, J. R. and Muzychka, Y. S., 2001, "Optimization of Fin Heat Sinks Using Entropy Generation Minimization," IEEE Transactions on Components and Packaging Technologies, Vol. 24, No. 2, pp.159-165. https://doi.org/10.1109/6144.926378
  2. Chiang, K. T., Chang, F. P. and Tsai, T. C., 2006, "Optimum Design Parameters of Pin-Fin Heat Sink Using the Grey-Fuzzy Logic Based on the Orthogonal Arrays," International Communications in Heat and Mass Transfer, Vol. 33, pp. 744-752. https://doi.org/10.1016/j.icheatmasstransfer.2006.02.011
  3. Park, K. and Choi, D. H., 2004, "Shape Optimization of a Plate-Fin Type Heat Sink with Triangular-Shaped Vortex Generator," KSME International Journal, Vol. 18, No. 9, pp. 1590-1603.
  4. Park, K., Oh, P. K. and Lim, H. J., 2006, "The Application of the CFD and Kriging Method to an Optimization of Heat Sink," International Journal of Heat and Mass Transfer, Vol. 48, pp. 3439-3447.
  5. Wang, G. G. and Shan, S., 2007, "Review of Metamodeling Techniques in Support of Engineering Design Optimization," Journal of Mechnical Design, Vol. 129, No. 4, pp. 370-380. https://doi.org/10.1115/1.2429697
  6. FLOTHERM Reference Manual, 2003, Flomerics Ltd.
  7. PIAnO (Process Integration, Automation and Optimization) User’s Manual. Version 2.4, 2008, FRAMAX Inc.
  8. Simpson, T. W. and Lin, D. K. J., 2001, "Sampling Strategies for Computer Experiments: Design and Analysis," International Journal of Reliability and Safety, Vol. 2, No. 3, pp. 209-240.
  9. Myers, R. H. and Montgomery, 2002, D. C., Response Surface Methodology: Process and Product Optimization Using Designed Experiments, WILEY, New York, pp. 30-31.
  10. Kim, J. R. and Choi, D. H., 2008, "Enhanced Two-point Diagonal Quadratic Approximation Methods for Design Optimization," Computer Methods in Applied Mechanics, Vol. 197, pp. 846-856. https://doi.org/10.1016/j.cma.2007.09.014