DOI QR코드

DOI QR Code

격자볼츠만 아격자 모델을 이용한 난류 경계층 내에서의 오염물질 확산에 대한 수치적 연구

Numerical Investigation of Pollutant Dispersion in a Turbulent Boundary Layer by Using Lattice Boltzmann-Subgrid Model

  • 신명섭 (한양대학교 기계공학과) ;
  • 변성준 (한양대학교 기계공학과) ;
  • 김준형 (한양대학교 기계공학과) ;
  • 윤준용 (한양대학교 기계정보경영공학부)
  • 투고 : 2010.07.21
  • 심사 : 2010.11.23
  • 발행 : 2011.02.01

초록

격자볼츠만 방법(LBM)을 이용하여 난류 경계층에서의 오염물질 확산에 대하여 수치계산을 수행 하였다. 난류 경계층 내의 유동을 모사하기 위하여 격자볼츠만 방법에 Smagorinsky 아격자 모델을 적용한 LB-SGS 모델을 사용하였으며, 오염물질의 확산을 모사하기 위하여 Passive-scalar 방법을 적용하였다. LB-SGS 모델의 신뢰성 검증을 위하여 Fackrell & Robins(1982)과 Raupach & Legg(1983)의 실험 조건과 동일한 조건하에서 수치계산을 수행하였고, 수치계산으로 얻어진 농도 분포를 실험값과 비교하였다. 이 결과로부터 LB-SGS 모델이 난류 경계층 내에서의 오염물질의 농도분포를 예측하는데 적합한 모델임을 알 수 있었다.

The dispersion of a pollutant in a turbulent boundary layer has been described in this study by using a two-dimensional lattice Boltzmann method (LBM) and the Smagorinsky sub-grid-scale (SGS) model. The scalar transport equation corresponding to the pollutant concentration is adopted; the pollutant is considered to be in a continuous phase. The pollutant source is classified as ground-level source (GLS) and elevated-point source (ES). Air velocity and particle concentration profile for the pollutant are compared with the respective results and profiles obtained in the experiments of Fackrell and Robins (1982) and Raupach and Legg (1983). The numerical results obtained in this study, i.e., the simulation and the experimental data for the mean flow velocity profiles and the pollutant concentration profiles, are in good agreement with each other.

키워드

참고문헌

  1. Fackrell, J.E. and Robins, A.G., 1982, "Concentration Fluctuations and Fluxes in Plumes From Point Sources in a Turbulent Boundary Layer," Journal of Fluid Mechanics, Vol. 117, pp. 1-26. https://doi.org/10.1017/S0022112082001499
  2. Raupach, M.R. and Legg, B.J., 1983, "Turbulent Dispersion from an Elevated Line Source: Measurements of Wind-Concentration Moments and Budgets," Journal of Fluid Mechanics, Vol. 136, pp. 111-137. https://doi.org/10.1017/S0022112083002086
  3. Bringfelt, B., 1984, "Phoenics - Simulations of Plume Spread in the Lee of a Building and Comparisons with Smoke Experiments and Gaussian Dispersion Formulae," Meteorologiska Avdelningen for skningssektionen.
  4. Serag-Eldin, M.A., 1985, "Spread of Pollutants Emitted from Long and Large Obstacles in Atmosphere," Technical Report 009, Cairo Scientific Center, IBM, Cairo, Egypt.
  5. Kim, H.G., 1997, "Numerical Investigation of the Pollutant Dispersion over Complex Terrain," Pohang University of Science and Technology, Ph.D. Thesis.
  6. Park, K. and Park, W.K., 1998, "Numerical Solutions of the Fluid Field and Pollutant Dispersion over 2-D Bell-Shaped Hills," Journal of Computational Fluids Engineering, Vol. 3, No. 1, pp. 63-72.
  7. Kang, S.K., Yoon, J.Y. and Lee D.H., 2002, “A Numerical Analysis for Two-phase Turbulent Flow in the Neutral Atmosphere,” Trans. of the KSME(B), Vol. 26, No. 6, pp. 772-778. https://doi.org/10.3795/KSME-B.2002.26.6.772
  8. Wilcox, D.C., 2006, Turbulence Modeling for CFD - 3rd ed., DCW Industries, CA.
  9. Yu, H., Girimaji, S.S, and Luo, L.S., 2005, "DNS and LES of Decaying Isotropic Turbulence with and Without Frame Rotation Using Lattice Boltzmann Method," Journal of Computational Physics, Vol. 209, pp. 599-616. https://doi.org/10.1016/j.jcp.2005.03.022
  10. Yu, H., and Girimaji, S.S, 2005, "Near-field Turbulent Simulations of Rectangular Jets using Lattice Boltzmann Method," Physica of Fluids, Vol. 17, 125106. https://doi.org/10.1063/1.2140021
  11. Yu, H., Girimaji, S.S, and Luo, L.S., 2005, "Lattice Boltzmann Simulations of Decaying Homogeneous Isotropic Turbulence," Physical Review E, Vol. 71, 016708. https://doi.org/10.1103/PhysRevE.71.016708
  12. Chen, S. and Doolen, G.D., 1998, “Lattice Boltzmann Method for Fluid Flows," Annual Review of Fluid Mechanics, Vol. 30, pp. 329-364. https://doi.org/10.1146/annurev.fluid.30.1.329
  13. Shin, M.S., Byun, S.J., and Yoon, J.Y., 2010, "Numerical Investigation of Effect of Surface Roughness in a Microchannel,” Trans. of the KSME(B), Vol. 34, No. 5, pp. 539-546. https://doi.org/10.3795/KSME-B.2010.34.5.539
  14. Aidun, C.K. and Clausen, J.R., 2010, “Lattice-Boltzmann Method for Complex Flows," Annual Review of Fluid Mechanics, Vol. 42, pp. 439-472. https://doi.org/10.1146/annurev-fluid-121108-145519
  15. Bhatnagar, P.L, Gross, E.P. and Krook, M., 1954, "A Model For Collision Processes In Gases. I : Small Amplitude Processes In Charged And Neutral One-Component System," Physical Review, Vol. 94, No. 5, pp. 511-525. https://doi.org/10.1103/PhysRev.94.511
  16. Hou, S., Sterling, J., Chen, C. and Doolen, G.D., 1996, “A Lattice Boltzmann Subgrid Model for High Reynolds Number Flow,” Fields Institute Communications, Vol. 6, pp. 151-166.
  17. Smagorinsky, J., 1963, "General Circulation Experiments With The Primitive Equations : I. the Basic Experiment," Monthly Weather Review, Vol. 91, pp. 99-164. https://doi.org/10.1175/1520-0493(1963)091<0099:GCEWTP>2.3.CO;2
  18. Succi, S., 2001, The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, Clarendon Press·Oxford, New York, pp. 77-96.
  19. Kays, W., Crawford, M. and Weigand, B., 2005, Convective Heat and Mass Transfer, McGraw-Hill, New York, pp. 233-239.
  20. Kim, H.G and Lee, C.M., 1998, "Pollutant Dispersion over Two-Dimensional Hilly Terrain,” Journal of Mechanical Science and Technology, Vol. 12, No. 1, pp. 96-111.
  21. Shim, S.G, 1995, "Eulerian Models,” Journal of Korean Society for Atmospheric Environment, Vol. 11, No. 1, pp. 29-36.
  22. Kim, H.G and Lee, C.M, 1998, "An Improvement of the Eulerian Dispersion Model by Modifying the Turbulent Diffusivity,” Trans. of the KSME(B), Vol. 22, No. 10, pp. 1483-1489.
  23. Kasibhatla, P.S., Peters, L.K. and Graeme, F., 1988, “Numerical Simulation of Transport from an Infinite Line Source : Error Analysis,” Atmospheric Environment, Vol. 22, Issue 1, pp. 75-82. https://doi.org/10.1016/0004-6981(88)90300-9

피인용 문헌

  1. Numerical Investigation of Mixing Characteristics in a Cavity Flow by Using Hybrid Lattice Boltzmann Method vol.37, pp.7, 2013, https://doi.org/10.3795/KSME-B.2013.37.7.683
  2. Numerical Investigation of Mixing Characteristics in Cavity Flow at Various Aspect Ratios vol.39, pp.1, 2015, https://doi.org/10.3795/KSME-B.2015.39.1.079