DOI QR코드

DOI QR Code

Identification of Urinary Biomarkers Related to Cisplatin-Induced Acute Renal Toxicity Using NMR-Based Metabolomics

  • Wen, He (Department of Biochemistry, Inha University Hospital and Center for Advanced Medical Education by BK21 Project, College of Medicine, Inha University) ;
  • Yang, Hye-Ji (Department of Biochemistry, Inha University Hospital and Center for Advanced Medical Education by BK21 Project, College of Medicine, Inha University) ;
  • Choi, Myung-Joo (Department of Biomedical Sciences, Inha University Hospital and Center for Advanced Medical Education by BK21 Project, College of Medicine, Inha University) ;
  • Kwon, Hyuk-Nam (Department of Biochemistry, Inha University Hospital and Center for Advanced Medical Education by BK21 Project, College of Medicine, Inha University) ;
  • Kim, Min-Ah (Department of Biomedical Sciences, Inha University Hospital and Center for Advanced Medical Education by BK21 Project, College of Medicine, Inha University) ;
  • Hong, Soon-Sun (Department of Biomedical Sciences, Inha University Hospital and Center for Advanced Medical Education by BK21 Project, College of Medicine, Inha University) ;
  • Park, Sung-Hyouk (Department of Biochemistry, Inha University Hospital and Center for Advanced Medical Education by BK21 Project, College of Medicine, Inha University)
  • Received : 2010.09.15
  • Accepted : 2010.10.11
  • Published : 2011.01.31

Abstract

Cisplatin is widely used for various types of cancers. However, its side effects, most notably, renal toxicity often limit its clinical utility. Although previous metabolomic studies reported possible toxicity markers, they used small number of animals and statistical approaches that may not perform best in the presence of intra-group variation. Here, we identified urinary biomarkers associated with renal toxicity induced by cisplatin using NMR-based metabolomics combined with Orthogonal Projections to Latent Structures-Discriminant Analysis (OPLS-DA). Male Sprague-Dawley rats (n=22) were treated with cisplatin (10 mg/kg single dose), and the urines obtained before and after treatment were analyzed by NMR. Multivariable analysis of NMR data presented clear separation between non-treated and treated groups. The OPLS-DA statistical results revealed that 1,3-dimethylurate, taurine, glucose, glycine and branched-chain amino acid (isoleucine, leucine and valine) were significantly elevated in the treated group and that phenylacetylglycine and sarcosine levels were decreased in the treated group. To test the robustness of the approach, we built a prediction model for the toxicity and were able to predict all the unknown samples (n=14) correctly. We believe the proposed NMR-based metabolomics with OPLS-DA approach and the resulting urine markers can be used to augment the currently available blood markers.

Keywords

References

  1. Arany, I. and Safi rstein, R. L. (2003) Cisplatin nephrotoxicity. Semin.Nephrol. 23, 460-464. https://doi.org/10.1016/S0270-9295(03)00089-5
  2. Boudonck, K. J., Mitchell, M. W., Nemet, L., Keresztes, L., Nyska, A.,Shinar, D. and Rosenstock, M. (2009) Discovery of metabolomicsbiomarkers for early detection of nephrotoxicity. Toxicol. Pathol. 37,280-292. https://doi.org/10.1177/0192623309332992
  3. Bylesjo, M., Rantalainen, M., Cloarec, O., Nicholson, J., Holmes, E.and Trygg, J. (2006) OPLS discriminant analysis: combining thestrengths of PLS-DA and SIMCA classifi cation. J. Chemom. 20,341-351. https://doi.org/10.1002/cem.1006
  4. Clayton, T. A., Baker, D., Lindon, J. C., Everett, J. R. and Nicholson,J. K. (2009) Pharmacometabonomic identifi cation of a signifi canthost-microbiome metabolic interaction affecting human drug metabolism.Proc. Natl. Acad. Sci. USA. 106, 14728-14733. https://doi.org/10.1073/pnas.0904489106
  5. Clayton, T. A., Lindon, J. C., Cloarec, O., Antti, H., Charuel, C., Hanton,G., Provost, J. P., Le Net, J. L., Baker, D., Walley, R. J., Everett, J.R. and Nicholson, J. K. (2006) Pharmaco-metabonomic phenotypingand personalized drug treatment. Nature 440, 1073-1077. https://doi.org/10.1038/nature04648
  6. Cloarec, O., Dumas, M. E., Craig, A., Barton, R. H., Trygg, J., Hudson,J., Blancher, C., Gauguier, D., Lindon, J. C., Holmes, E. andNicholson, J. (2005) Statistical total correlation spectroscopy: anexploratory approach for latent biomarker identifi cation from metabolic1H NMR data sets. Anal. Chem. 77, 1282-1289. https://doi.org/10.1021/ac048630x
  7. Crino, L., Calandri, C., Maestri, A. and Marrocolo, F. (2001) Gemcitabineand cisplatin combination in early-stage non-small-cell lungcancer. Oncology (Williston Park) 15, 40-42.
  8. Davis, J. W. and Kramer, J. A. (2006) Genomic-based biomarkers ofdrug-induced nephrotoxicity. Expert Opin. Drug Metab. Toxicol. 2,95-101. https://doi.org/10.1517/17425255.2.1.95
  9. Ebbels, T. M., Keun, H. C., Beckonert, O. P., Bollard, M. E., Lindon,J. C., Holmes, E. and Nicholson, J. K. (2007) Prediction and classification of drug toxicity using probabilistic modeling of temporalmetabolic data: the consortium on metabonomic toxicology screeningapproach. J. Proteome. Res. 6, 4407-4422. https://doi.org/10.1021/pr0703021
  10. Gong, J. G., Costanzo, A., Yang, H. Q., Melino, G., Kaelin, W. G. Jr.,Levrero, M. and Wang, J. Y. (1999) The tyrosine kinase c-Abl regulatesp73 in apoptotic response to cisplatin-induced DNA damage.Nature 399, 806-809. https://doi.org/10.1038/21690
  11. Hewitt, S. M., Dear, J. and Star, R. A. (2004) Discovery of protein biomarkersfor renal diseases. J. Am. Soc. Nephrol. 15, 1677-1689. https://doi.org/10.1097/01.ASN.0000129114.92265.32
  12. Kang, J., Choi, M. Y., Kang, S., Kwon, H. N., Wen, H., Lee, C. H., Park,M., Wiklund, S., Kim, H. J., Kwon, S. W. and Park, S. (2008a) Applicationof a 1H nuclear magnetic resonance (NMR) metabolomicsapproach combined with orthogonal projections to latent structure-discriminantanalysis as an effi cient tool for discriminating betweenKorean and Chinese herbal medicines. J. Agric. Food Chem. 56,11589-11595. https://doi.org/10.1021/jf802088a
  13. Kang, J., Lee, S., Kang, S., Kwon, H. N., Park, J. H., Kwon, S. W. andPark, S. (2008b) NMR-based metabolomics approach for the differentiationof ginseng (Panax ginseng) roots from different origins.Arch. Pharm. Res. 31, 330-336. https://doi.org/10.1007/s12272-001-1160-2
  14. Loehrer, P. J. and Einhorn, L. H. (1984) Drugs five years later. Cisplatin.Ann. Intern. Med. 100, 704-713. https://doi.org/10.7326/0003-4819-100-5-704
  15. Maher, A. D., Cloarec, O., Patki, P., Craggs, M., Holmes, E., Lindon,J. C. and Nicholson, J. K. (2009) Dynamic biochemical informationrecovery in spontaneous human seminal fl uid reactions via 1HNMR kinetic statistical total correlation spectroscopy. Anal. Chem.81, 288-295. https://doi.org/10.1021/ac801993m
  16. Maxuitenko, Y. Y., North, W. G. and Roebuck, B. D. (1997) Urinarytaurine as a non-invasive marker of afl atoxin B1-induced hepatotoxicity:success and failure. Toxicology 118, 159-169. https://doi.org/10.1016/S0300-483X(96)03610-4
  17. Muggia, F. (2009) Platinum compounds 30 years after the introductionof cisplatin: implications for the treatment of ovarian cancer. Gynecol.Oncol. 112, 275-281. https://doi.org/10.1016/j.ygyno.2008.09.034
  18. Nicholson, J. K., Connelly, J., Lindon, J. C. and Holmes, E. (2002)Metabonomics: a platform for studying drug toxicity and gene function.Nat. Rev. Drug Discov. 1, 153-161. https://doi.org/10.1038/nrd728
  19. Nicholson, J. K., Lindon, J. C. and Holmes, E. (1999) 'Metabonomics':understanding the metabolic responses of living systems to pathophysiologicalstimuli via multivariate statistical analysis of biologicalNMR spectroscopic data. Xenobiotica. 29, 1181-1189. https://doi.org/10.1080/004982599238047
  20. Portilla, D., Li, S., Nagothu, K. K., Megyesi, J., Kaissling, B., Schnackenberg,L., Safi rstein, R. L. and Beger, R. D. (2006) Metabolomicstudy of cisplatin-induced nephrotoxicity. Kidney International 69,2194-2204. https://doi.org/10.1038/sj.ki.5000433
  21. Pruefer, F. G., Lizarraga, F., Maldonado, V. and Melendez-Zajgla, J.(2008) Participation of Omi Htra2 serine-protease activity in theapoptosis induced by cisplatin on SW480 colon cancer cells. J.Chemother. 20, 348-354. https://doi.org/10.1179/joc.2008.20.3.348
  22. Rozen, R., Tenenhouse, H. S. and Scriver, C. R. (1979). Taurine transport in renal brush-border-membrane vesicles. Biochem. J. 180,245-248.
  23. Sands, C. J., Coen, M., Maher, A. D., Ebbels, T. M., Holmes, E., Lindon,J. C. and Nicholson, J. K. (2009) Statistical total correlationspectroscopy editing of 1H NMR spectra of biofl uids: applicationto drug metabolite profi le identifi cation and enhanced informationrecovery. Anal. Chem. 81, 6458-6466. https://doi.org/10.1021/ac900828p
  24. Smith, I. E. and Talbot, D. C. (1992) Cisplatin and its analogues in thetreatment of advanced breast cancer: a review. Br. J. Cancer 65,787-793. https://doi.org/10.1038/bjc.1992.169
  25. Sreekumar, A., Poisson, L. M., Rajendiran, T. M., Khan, A. P., Cao, Q.,Yu, J., Laxman, B., Mehra, R., Lonigro, R. J., Li, Y., Nyati, M. K., Ahsan,A., Kalyana-Sundaram, S., Han, B., Cao, X., Byun, J., Omenn,G. S., Ghosh, D., Pennathur, S., Alexander, D. C., Berger, A., Shuster,J. R., Wei, J. T., Varambally, S., Beecher, C. and Chinnaiyan, A.M. (2009) Metabolomic profiles delineate potential role for sarcosinein prostate cancer progression. Nature. 457, 910-914. https://doi.org/10.1038/nature07762
  26. Trygg, J. and Wold, S. (2002) Orthogonal projections to latent structures(O-PLS). J. Chemom. 16, 119-128. https://doi.org/10.1002/cem.695
  27. von der Maase, H., Hansen, S. W., Roberts, J. T., Dogliotti, L., Oliver,T., Moore, M. J., Bodrogi, I., Albers, P., Knuth, A., Lippert, C. M.,Kerbrat, P., Sanchez Rovira, P., Wersall, P., Cleall, S. P., Roychowdhury,D. F., Tomlin, I., Visseren-Grul, C. M. and Conte, P. F. (2000)Gemcitabine and cisplatin versus methotrexate, vinblastine, doxorubicin,and cisplatin in advanced or metastatic bladder cancer:results of a large, randomized, multinational, multicenter, phase IIIstudy. J. Clin. Oncol. 18, 3068-3077.
  28. Wen, H., Kang, S., Song, Y., Sung, S. H. and Park, S. (2010a) Differentiationof cultivation sources of Ganoderma lucidum by NMR-basedmetabolomics approach. Phytochem. Anal. 21, 73-79. https://doi.org/10.1002/pca.1166
  29. Wen, H., Yoo, S. S., Kang, J., Kim, H. G., Park, J. S., Jeong, S., Lee,J. I., Kwon, H. N., Kang, S., Lee, D. H. and Park, S. (2010b) A newNMR-based metabolomics approach for the diagnosis of biliarytract cancer. J. Hepatol. 52, 228-233. https://doi.org/10.1016/j.jhep.2009.11.002
  30. Wiklund, S., Johansson, E., Sjostrom, L., Mellerowicz, E. J., Edlund,U., Shockcor, J. P., Gottfries, J., Moritz, T. and Trygg, J. (2008)Visualization of GC/TOF-MS-based metabolomics data for identification of biochemically interesting compounds using OPLS classModels. Anal. Chem. 80, 115-122. https://doi.org/10.1021/ac0713510
  31. Wishart, D. S. (2005) Metabolomics: the principles and potential applicationsto transplantation. Am. J. Transplant. 5, 2814-2820. https://doi.org/10.1111/j.1600-6143.2005.01119.x
  32. Yao, X., Panichpisal, K., Kurtzman, N. and Nugent, K. (2007) Cisplatinnephrotoxicity: a review. Am. J. Med. Sci. 334, 115-124. https://doi.org/10.1097/MAJ.0b013e31812dfe1e

Cited by

  1. Discovery of Potential Biomarkers with Dose- and Time-Dependence in Cisplatin-Induced Nephrotoxicity Using Metabolomics Integrated with a Principal Component-Based Area Calculation Strategy vol.29, pp.5, 2016, https://doi.org/10.1021/acs.chemrestox.5b00519
  2. Renal Medulla is More Sensitive to Cisplatin than Cortex Revealed by Untargeted Mass Spectrometry-Based Metabolomics in Rats vol.7, 2017, https://doi.org/10.1038/srep44804
  3. NMR-based metabolomics in human disease diagnosis: applications, limitations, and recommendations vol.9, pp.5, 2013, https://doi.org/10.1007/s11306-013-0524-y
  4. NMR-Based Metabolomics in Metal-Based Drug Research vol.24, pp.12, 2011, https://doi.org/10.3390/molecules24122240
  5. NMR Spectroscopy for Metabolomics Research vol.9, pp.7, 2011, https://doi.org/10.3390/metabo9070123
  6. Urinary Metabolomic Profiling in Streptozotocin-Induced Diabetic Mice after Treatment with Losartan vol.21, pp.23, 2011, https://doi.org/10.3390/ijms21238969