DOI QR코드

DOI QR Code

Quercetin Derivatives from Siegesbeckia glabrescens Inhibit the Expression of COX-2 Through the Suppression of NF-κB Activation in Microglia

  • Lim, Hyo-Jin (College of Pharmacy, Sookmyung Women's University) ;
  • Li, Hua (College of Pharmacy, Sookmyung Women's University) ;
  • Kim, Jae-Yeon (College of Pharmacy, Sookmyung Women's University) ;
  • Ryu, Jae-Ha (College of Pharmacy, Sookmyung Women's University)
  • Received : 2010.10.11
  • Accepted : 2010.11.09
  • Published : 2011.01.31

Abstract

The activation of microglia induces the overproduction of inflammatory mediators that are responsible for the neurodegenerative disorders including Alzheimer's disease and Parkinson's disease. The large amounts of prostaglandin $E_2$ ($PGE_2$) produced by inducible cyclooxygenase (COX-2) is one of the main inflammatory mediators that can contribute to neurodegeneration. The inhibition of COX-2 thus may provide therapeutic strategy for the treatment of neurodegenerative diseases. From the activity-guided purification of EtOAc soluble fraction of Siegesbeckia glabrescens, four compounds were isolated as inhibitors of $PGE_2$ production in LPS-activated microglia. Their structures were determined as 3, 4'-dimethylquercetin (1), 3, 7-dimethylquercetin (2), 3-methylquercetin (3) and 3, 7, 4'-trimethylquercetin (4) by the mass and NMR spectral data analysis. The compounds 1-4 showed dose-dependent inhibition of $PGE_2$ production in LPS-activated microglia with their $IC_{50}$ values of 7.1, 4.9, 4.4, $12.4\;{\mu}M$ respectively. They reduced the expression of protein and mRNA of COX-2 through the inhibition of I-${\kappa}B{\alpha}$ degradation and NF-$\kappa}B$ activity that were correlated with the inactivation of p38 and ERK. Therefore the active compounds from Siegesbeckia glabrescens may have therapeutic effects on neuro-inflammatory diseases through the inhibition of overproduction of $PGE_2$ and suppression of COX-2 overexpression.

Keywords

References

  1. Allen, R. G. and Tresini, M. (2000) Oxidative stress and gene regulation.Free Radic. Biol. Med. 28, 463-499. https://doi.org/10.1016/S0891-5849(99)00242-7
  2. Barbera, J., Marco, J. A., Sanz, J. F. and Sanchez-Parareda, J. (1986)3-Methoxyfl avones and coumarins from Artemisia incanescens.Phytochem. 25, 2357-2360. https://doi.org/10.1016/S0031-9422(00)81695-7
  3. Bauer, M. K., Lieb, K., Schulze-Osthoff, K., Berger, M., Gebicke-Haerter, P. J., Bauer, J. and Fiebich, B. L. (1997) Expression andregulation of cyclooxygenase-2 in rat microglia. Eur. J. Biochem.243, 726-731. https://doi.org/10.1111/j.1432-1033.1997.00726.x
  4. Block, M. L., Zecca, L. and Hong, J. S. (2007) Microglia-mediated neurotoxicity:uncovering the molecular mechanisms. Nat. Rev. Neurosci.8, 57-69. https://doi.org/10.1038/nrn2038
  5. Brock, T. G., McNish, R. W. and Peters-Golden, M. (1999) Arachidonicacid is preferentially metabolized by cyclooxygenase-2 to prostacyclinand prostaglandin E2. J. Biol. Chem. 274, 11660-11666. https://doi.org/10.1074/jbc.274.17.11660
  6. Chen, Y. C., Shen, S. C., Lee, W. R., Hou, W. C., Yang, L. L. andLee, T. J. (2001) Inhibition of nitric oxide synthase inhibitors andlipopolysaccharide induced inducible NOS and cyclooxygenase-2gene expressions by rutin, quercetin, and quercetin pentaacetatein RAW 264.7 macrophages. J. Cell. Biochem. 82, 537-548. https://doi.org/10.1002/jcb.1184
  7. Gonzalez-Scarano, F. and Baltuch, G. (1999) Microglia as mediatorsof infl ammatory and degenerative diseases. Annu. Rev. Neurosci.22, 219-240. https://doi.org/10.1146/annurev.neuro.22.1.219
  8. Harris, S. G., Padilla, J., Koumas, L., Ray, D. and Phipps, R. P. (2002)Prostaglandins as modulators of immunity. Trends Immunol. 23,144-150. https://doi.org/10.1016/S1471-4906(01)02154-8
  9. Jun, S. Y., Choi, Y. H. and Shin, H. M. (2006) Siegesbeckia glabrescensinduces apoptosis with different pathways in human MCF-7and MDA-MB-231 breast carcinoma cells. Oncol. Rep. 15,1461-1467.
  10. Jung, W. K., Ahn, Y. W., Lee, S. H., Choi, Y. H., Kim, S. K., Yea, S. S.,Choi, I., Park, S. G., Seo, S. K., Lee, S. W. and Choi, I. W. (2009)Ecklonia cava ethanolic extracts inhibit lipopolysaccharide-inducedcyclooxygenase-2 and inducible nitric oxide synthase expressionin BV2 microglia via the MAP kinase and NF-kappaB pathways.Food Chem. Toxicol. 47, 410-417. https://doi.org/10.1016/j.fct.2008.11.041
  11. Kim, H. M., Lee, J. H., Won, J. H., Park, E. J., Chae, H. J., Kim, H. R.,Kim, C. H. and Baek, S. H. (2001) Inhibitory effect on immunoglobulinE production in vivo and in vitro by Siegesbeckia glabrescens.Phytother. Res. 15, 572-576. https://doi.org/10.1002/ptr.749
  12. Kim, J. Y., Lim, H. J. and Ryu, J. H. (2008) In vitro anti-infl ammatoryactivity of 3-O-methyl-fl avones isolated from Siegesbeckia glabrescens.Bioorg. Med. Chem. Lett. 18, 1511-1514. https://doi.org/10.1016/j.bmcl.2007.12.052
  13. Kim, Y. M., Lee, B. S., Yi, K. Y. and Paik, S. G. (1997) Upstream NF-kappaBsite is required for the maximal expression of mouse induciblenitric oxide synthase gene in interferon-gamma plus lipopolysaccharide-induced RAW 264.7 macrophages. Biochem. Biophys.Res. Commun. 236, 655-660. https://doi.org/10.1006/bbrc.1997.7031
  14. Klein, J. A. and Ackerman, S. L. (2003) Oxidative stress, cell cycle, andneurodegeneration. J. Clin. Invest. 111, 785-793. https://doi.org/10.1172/JCI200318182
  15. Kyrkanides, S., Moore, A. H., Olschowka, J. A., Daeschner, J. C., Williams,J. P., Hansen, J. T. and Kerry O'Banion, M. (2002) Cyclooxygenase-2 modulates brain infl ammation-related gene expressionin central nervous system radiation injury. Brain Res. Mol. BrainRes. 104, 159-169. https://doi.org/10.1016/S0169-328X(02)00353-4
  16. Lee, J., Hur, J., Lee, P., Kim, J. Y., Cho, N., Kim, S. Y., Kim, H., Lee,M. S. and Suk, K. (2001) Dual role of infl ammatory stimuli in activation-induced cell death of mouse microglial cells. Initiation of twoseparate apoptotic pathways via induction of interferon regulatoryfactor-1 and caspase-11. J. Biol. Chem. 276, 32956-32965. https://doi.org/10.1074/jbc.M104700200
  17. Lee, M. H., Kim, J. Y. and Ryu, J. H. (2005) Prenylfl avones from Psoraleacorylifolia inhibit nitric oxide synthase expression throughthe inhibition of I-kappaB-alpha degradation in activated microglialcells. Biol. Pharm. Bull. 28, 2253-2257. https://doi.org/10.1248/bpb.28.2253
  18. Lehnardt, S., Massillon, L., Follett, P., Jensen, F. E., Ratan, R., Rosenberg,P. A., Volpe, J. J. and Vartanian, T. (2003) Activation of innateimmunity in the CNS triggers neurodegeneration through a Toll-likereceptor 4-dependent pathway. Proc. Natl. Acad. Sci. USA. 100,8514-8519. https://doi.org/10.1073/pnas.1432609100
  19. McGeer, P. L. and McGeer, E. G. (1995) The infl ammatory responsesystem of brain: implications for therapy of Alzheimer and otherneurodegenerative diseases. Brain Res. Brain Res. Rev. 21, 195-218. https://doi.org/10.1016/0165-0173(95)00011-9
  20. Minghetti, L. (2004) Cyclooxygenase-2 (COX-2) in infl ammatory anddegenerative brain diseases. J. Neuropathol. Exp. Neurol. 63, 901-910.
  21. Moon, D. O., Choi, Y. H., Kim, N. D., Park, Y. M. and Kim, G. Y. (2007)Anti-inflammatory effects of beta-lapachone in lipopolysaccharide-stimulatedBV2 microglia. Int. Immunopharmacol. 7, 506-514. https://doi.org/10.1016/j.intimp.2006.12.006
  22. Peri, K. G., Hardy, P., Li, D. Y., Varma, D. R. and Chemtob, S. (1995)Prostaglandin G/H synthase-2 is a major contributor of brain prostaglandinsin the newborn. J. Biol. Chem. 270, 24615-24620. https://doi.org/10.1074/jbc.270.41.24615
  23. Perry, V. H. and Gordon, S. (1988) Macrophages and microglia in thenervous system. Trends Neurosci. 11, 273-277. https://doi.org/10.1016/0166-2236(88)90110-5
  24. Pradelles, P., Grassi, J. and Maclouf, J. (1985) Enzyme immunoassaysof eicosanoids using acetylcholine esterase as label: an alternativeto radioimmunoassay. Anal. Chem. 57, 1170-1173. https://doi.org/10.1021/ac00284a003
  25. Ramachandran Nair, A. G., Ramesh, P., Sankara Subramanian, S. andJoshi, B. S. (1978) Rare methylated flavonols from Angelonia grandiflora. Phytochem. 17, 591-592. https://doi.org/10.1016/S0031-9422(00)89390-5
  26. Ryu, J. H., Son, H. J., Lee, S. H. and Sohn, D. H. (2002) Two neolignansfrom Perilla frutescens and their inhibition of nitric oxide synthaseand tumor necrosis factor-alpha expression in murine macrophagecell line RAW 264.7. Bioorg. Med. Chem. Lett. 12, 649-651. https://doi.org/10.1016/S0960-894X(01)00812-5
  27. Wang, Y., Hamburger, M., Gueho, J. and Hostettmann, K. (1989) Antimicrobialflavonoids from Psiadia trinervia and their methylatedand acetylated derivatives. Phytochem. 28, 2323-2327. https://doi.org/10.1016/S0031-9422(00)97976-7
  28. Ye, J., Ghosh, P., Cippitelli, M., Subleski, J., Hardy, K. J., Ortaldo, J. R.and Young, H. A. (1994) Characterization of a silencer regulatoryelement in the human interferon-gamma promoter. J. Biol. Chem.269, 25728-25734.
  29. Yoon, J. H., Lim, H. J., Lee, H. J., Kim, H. D., Jeon, R. and Ryu, J. H.(2008) Inhibition of lipopolysaccharide-induced inducible nitric oxidesynthase and cyclooxygenase-2 expression by xanthanolidesisolated from Xanthium strumarium. Bioorg. Med. Chem. Lett. 18,2179-2182. https://doi.org/10.1016/j.bmcl.2007.12.076
  30. Zielasek, J. and Hartung, H. P. (1996) Molecular mechanisms of microglialactivation. Adv. Neuroimmunol. 6, 191-222. https://doi.org/10.1016/0960-5428(96)00017-4

Cited by

  1. The Antioxidant Effects of Isorhamnetin Contribute to Inhibit COX-2 Expression in Response to Inflammation: A Potential Role of HO-1 vol.37, pp.3, 2014, https://doi.org/10.1007/s10753-013-9789-6
  2. Syk/Src Pathway-Targeted Inhibition of Skin Inflammatory Responses by Carnosic Acid vol.2012, 2012, https://doi.org/10.1155/2012/781375
  3. Anti-inflammatory activity of ethanol extract derived from Phaseolus angularis beans vol.137, pp.3, 2011, https://doi.org/10.1016/j.jep.2011.07.048
  4. 6-Shogaol, an active compound of ginger, protects dopaminergic neurons in Parkinson's disease models via anti-neuroinflammation vol.34, pp.9, 2013, https://doi.org/10.1038/aps.2013.57
  5. Anti-inflammatory activities of Sigesbeckia glabrescens Makino: combined in vitro and in silico investigations vol.14, pp.None, 2019, https://doi.org/10.1186/s13020-019-0260-y