References
- Bechor, O., D. R. Smulski, T. K. Van Dyk, and R. A. LaRossa. 2002. Recombinant microorganisms as environmental biosensors: pollutants detection by Escherichia coli bearing fab'::lux fusions. J. Biotechnol. 94, 125-132. https://doi.org/10.1016/S0168-1656(01)00423-0
- Belkin, S. 2003. Microbial whole-cell sensing systems of environmental pollutants. Curr. Opin. Microbiol. 6, 206-212. https://doi.org/10.1016/S1369-5274(03)00059-6
- Biran, I., R. Babai, K. Levcov, J. Rishpon, and E. Z. Ron. 2000. Online and in situ monitoring of environmental pollutants: electrochemical biosensing of cadmium. Environ. Microbiol. 2, 27-33. https://doi.org/10.1046/j.1462-2920.2000.00074.x
- Dawson, J. J. C., C. O. Iroegbu, H. Maciel, and G. I. Paton. 2008. Application of luminescent biosensors for monitoring the degradation and toxicity of BTEX compound in soils. J. App. Microbiol. 104, 141-151.
- Deng, L., S. Guo, M. Zhou, L. Liu, C. Liu, and S. Dong. 2010. A silk derived carbon fiber mat modifided with Au@Pt urchilike nanoparticles: A new platform as electrochemical microbial biosensor. Biosens. Bioelectron. 25, 2189-2193. https://doi.org/10.1016/j.bios.2010.02.005
- Diaz, E. and M. A. Prieto. 2000. Bacterial promoters triggering biodegradation of aromatic pollutants. Curr. Opin. Biotechnol. 11, 467-475. https://doi.org/10.1016/S0958-1669(00)00126-9
- Diplock, E. E., D. P. Mardlin, K. S. Killham, and G. I. Paton. 2009. Predicting bioremediation of hydrocarbons: Laboratory to field scale. Environ. Pollut. 157, 1831-1840. https://doi.org/10.1016/j.envpol.2009.01.022
- D’Souza, S. F. 2001. Microbial biosensors. Biosens. Bioelectron. 16, 337-353. https://doi.org/10.1016/S0956-5663(01)00125-7
- Durrieu, C. and C. Tran-Minh. 2002. Optical algal biosensor using alkaline phosphatase for determination of heavy metals. Ecotoxicol. Environ. Saf. 51, 206-209. https://doi.org/10.1006/eesa.2001.2140
- Farre, M., C. Goncales, S. Lacorte, D. Barcelo, and M. F. Alpendurada. 2002. Pesticide toxicity assessment using an electrochemical biosensor with Pseudomonas putida and a bioluminescence inhibition assay with Vibrio fischeri. Anal. Bioanal. Chem. 373, 696-703. https://doi.org/10.1007/s00216-002-1313-z
- Fujimoto, H., M. Wkabayashi, H. Yamashiro, I. Maeda, K. Isoda, M. Kondoh, M. Kawase, H. Miyasaka, and K. Yagi. 2006. Whole-cell arsenite biosensor using photosynthetic bacterium Rhodovulum sulfidophilum: Rhodovulum sulfidophilum as an arsenite biosensor. Appl. Microbiol. Biotechnol. 73, 332-338. https://doi.org/10.1007/s00253-006-0483-6
- Galvao, T. C. and V. de Lorenzo. 2007. Transcriptional regulators a la carte: engineering new effector specificities in bacterial regulatory proteins. Curr. Opin. Biotechnol. 17, 34-42.
- Hakkila, K., T. Green, P. Lesknen, A. Ivask, R. Marks, and M. Virta. 2004. Detection of bioavailable heavy metals in EILATox-oregon samples using whole-cell luminescent bacterial sensors in suspension or immobilized onto fibre-optic tips. J. Appl. Toxicol. 24, 333-342. https://doi.org/10.1002/jat.1020
- Hansen, L. H. and S. J. Sorensen. 2001. The use of whole-cell biosensors to detect and quantify compounds or conditions affecting biological systems. Microb. Ecol. 42, 483-444. https://doi.org/10.1007/s00248-001-0025-9
- Harms, H., M. C. Wells, and J. R. van der Meer. 2006. Whole-cell living biosensors-are they ready for environmental application? Appl. Microbiol. Biotechnol. 70, 273-280. https://doi.org/10.1007/s00253-006-0319-4
- Ivask, A., M. Virta, and A. Kahru. 2001. Detection of organomercurials with sensor bacteria. Soil Biol. Biochem. 34, 1439-1447.
- Keane, A., P. Phoenix, S. Goshal, and P. C. Lau. 2002. Exposing culprit organic pollutants: a review. J. Microbiol. Methods 49, 103-119. https://doi.org/10.1016/S0167-7012(01)00382-7
- Kim, M. N., H. H. Park, W. K. Lim, and H. J. Shin. 2005. Construction and comparison of Escherichia coli whole-cell biosensors capable of detecting aromatic compounds. J. Microbiol. Methods 60, 235-245. https://doi.org/10.1016/j.mimet.2004.09.018
- Kumar, J., S. K. Jha, and S. F. D’Souza. 2006. Optical microbial biosensors for detection of methyl parathion pesticide using Flavobacterium sp. whole cells adsorbed on glass fiber filters as disposable biocomponent. Biosens. Bioelectron. 15, 2100-2105.
- Lei, Y., W. Chen, and A. Mulchandani. 2006. Microbial biosensors. Anal. Chim. Acta. 568, 200-210. https://doi.org/10.1016/j.aca.2005.11.065
- Lei, Y., P. Mulchandani, J. Wang, W. Chen, and A. Mulchandani. 2005. Highly sensitive and selective amperometric microbial biosensor for direct determination of p-nitropenyl- substituted organophosphate nerve agents. Environ. Sci. Technol. 39, 8853-8857. https://doi.org/10.1021/es050720b
- Marques, S., I. Aranda-Olmedo, and J. L. Ramos. 2006. Controlling bacterial physiology for optimal expression of gene reporter constructs. Curr. Opin. Biotechnol. 17, 50-56. https://doi.org/10.1016/j.copbio.2005.12.001
- Matsui, N., T. Kaya, K. Nagamine, T. Yasukawa, H. Shiku, and T. Matsue. 2006. Electrochemical mutagen screening using microbial chip. Biosens. Bioelectron. 21, 1202-1209. https://doi.org/10.1016/j.bios.2005.05.004
- Medintz, I. L. and J. R. Deschamps. 2006. Maltose-binding protein: a versatile platform for prototyping biosensing. Curr. Opin. Biotechnol. 17, 17-27. https://doi.org/10.1016/j.copbio.2006.01.002
- Mulchandani, P., W. Chen, A. Mulchandani, J. Wang, and L. Chen. 2001. Amperometric microbial biosensor for direct determination of organophosphate pesticides using recombinant microorganism with surface expressed organophosphorous hydrolase. Biosens. Bioelectron. 16, 433-437. https://doi.org/10.1016/S0956-5663(01)00157-9
- Norman, A., L. H. Hansen, and S. J. Sorensen. 2005. Construction of a ColD cda promoter-based SOS-green fluorescent protein whole-cell biosensor with higher sensitivity toward genotoxic compounds than constructs based on recA, umuDC, or sul4 promoters. Appl. Environ. Microbiol. 71, 2338-2346. https://doi.org/10.1128/AEM.71.5.2338-2346.2005
- Oda, Y., K. Funasaka, M. Kitano, A. Nakama, and T. Yoshikura. 2004. Use of a high-throughput umu-microplate test system for rapid detection of genotoxicity produced by mutagenic carcinogens and airborne particulate matter. Environ. Mol. Mutag. 43, 10-19. https://doi.org/10.1002/em.10209
- Odaci, D., S. Timur, and A. Telefoncu. 2009. A microbial biosensor based on bacterial cells immobilized on chitosan matrix. Bioelectrochem. 75, 77-82. https://doi.org/10.1016/j.bioelechem.2009.01.002
- Paitan, Y., I. Biran, N. Shechter, D. Biran, J. Rishpon, and E. Z. Ron. 2004. Monitoring aromatic hydrocarbons by whole cell electrochemical biosensors. Anal. Biochem. 335, 175-183. https://doi.org/10.1016/j.ab.2004.08.032
- Park, H. H., H. Y. Lee, W. K. Lim, and H. J. Shin. 2005. NahR: effects of replacements at Asn 169 and Arg 248 on promoter binding and inducer recognition. Arch. Biochem. Biophys. 434, 67-74. https://doi.org/10.1016/j.abb.2004.10.020
- Park, H. H., W. K. Lim, and H. J. Shin. 2005b. In vitro binding of purified NahR regulatory protein with promoter Psal. Biochim. Biophys. Acta. 1725, 247-255. https://doi.org/10.1016/j.bbagen.2005.05.015
- Park, S. M., H. H. Park, W. K. Lim, and H. J. Shin. 2003. A new variant activator involved in the degradation of phenolic compounds from a strain of Pseudomonas putida. J. Biotechnol. 103, 227-236. https://doi.org/10.1016/S0168-1656(03)00122-6
- Paton, G. I., B. J. Reid, and K. T. Semple. 2009. Application of a luminescence-based biosensor for assessing naphthalene biodegradation in soils from a manufactured gas plant. Environ. Pollut. 157, 1643-1648. https://doi.org/10.1016/j.envpol.2008.12.020
- Peitzsch, N., G. Eberz, and D. H. Nies. 1998. Alcaligenes eutrophus as a bacterial chromate sensor. Appl. Environ. Microbiol. 64, 453-458.
- Petanen, T., M. Virta, M. Karp, and M. Romantschuk. 2001. Construction and use of broad host range mercury and arsenite sensor plasmids in the soil bacterium Pseudomonas fluorescens OS8. Microb. Ecol. 41, 360-368.
- Ron, E. Z. 2007. Biosensing environmental pollution. Curr. Opin. Biotechnol. 18, 252-256. https://doi.org/10.1016/j.copbio.2007.05.005
- Shin, H. J. 2010. Development of highly-sensitive microbial biosensors by mutation of the nahR regulatory gene. J. Biotechnol. 150, 246-250.
- Shin, H. J., H. H. Park, and W. K. Lim. 2005. Freeze-dried recombinant bacteria for on-site detection of phenolic compounds by color change. J. Biotechnol. 119, 36-43. https://doi.org/10.1016/j.jbiotec.2005.06.002
- Sorensen, S. J., M. Burmolle, and L. H. Hansen. 2006. Making bio-sense of toxicity: new developments in whole-cell biosensors. Curr. Opin. Biotechnol. 17, 11-16. https://doi.org/10.1016/j.copbio.2005.12.007
- Stiner, L. and L. J. Halverson. 2002. Development and characterization of a green fluorescent protein-based bacterial biosensor for bioavailable toluene and related compounds. Appl. Environ. Microbiol. 68, 1962-1971. https://doi.org/10.1128/AEM.68.4.1962-1971.2002
- Stocker, J., D. Balluch, M. Gsell, H. Harms, J. S. Feliciano, K. A. Malick, S. Daunert, and J. R. van der Meer. 2003. Development of a set of simple bacterial biosensors for quantitative and rapid field measurements of arsenite and arenate in potable water. Environ. Sci. Technol. 37, 4743-4750. https://doi.org/10.1021/es034258b
- Tani, H., K. Maehana, and T. Kamidate. 2004. Chip-based bioassay using bacterial sensor strains immobilized in three-dimensional microfuidic network. Anal. Chem. 76, 6693-6697. https://doi.org/10.1021/ac049401d
- Tecon, R. and J. R. van der Meer. 2006. Information from single-cell bacteria biosensors: what is it good for? Curr. Opin. Biotechnol. 17, 4-10. https://doi.org/10.1016/j.copbio.2005.11.001
- Tibazarwa, C., P. Corbisier, M. Mench, A. Bossus, P. Solda, M. Mergeay, L. Wyns, and D. van der Lelie. 2001. A microbial biosensor to predict bioavailable nickel in soil and its transfer to plants. Environ. Pollut. 113, 19-26. https://doi.org/10.1016/S0269-7491(00)00177-9
- Trang, P. T., M. Berg, P. H. Viet, N. Van Mui, and J. R. van der Meer. 2005. Bacterial bioassay for rapid and accurate analysis of arsenic in highly variable groundwater samples. Environ. Sci. Technol. 39, 7625-7630. https://doi.org/10.1021/es050992e
- van der Meer, J. R., D. Tropel, and M. Jaspers. 2004. Illuminating the detection chain of bacterial bioreporters. Environ. Microbiol. 6, 1005-1020. https://doi.org/10.1111/j.1462-2920.2004.00655.x
- Vedrine, C., J. C. Leclerc, C. Durrieu, and C. Tran-Minh. 2003. Optical whole-cell biosensor using Chlorella vulgaris designed for monitoring herbicides. Biosens. Bioelectron. 18, 457-463. https://doi.org/10.1016/S0956-5663(02)00157-4
- Vollmer, A. C. and T. K. Van Dyk. 2004. Stress responsive bacteria: Biosensors as environmental monitors. Adv. Microb. Physiol. 49, 131-174. https://doi.org/10.1016/S0065-2911(04)49003-1
- Werlen, C., M. C. M. Jaspers, and J. R. van der Meer. 2004. Measurement of biologically available naphthalene in gas and aqueous phases by use of a Pseudomonas putida biosensor. Appl. Environ. Microbiol. 70, 43-51. https://doi.org/10.1128/AEM.70.1.43-51.2004
- Xu, Z., A. Mulchandani, and W. Chen. 2003. Detection of benzene, toluene, ethyl benzene, and xylenes (BTEX) using toluene dioxygenase-peroxidase coupling reactions. Biotechnol. Prog. 19, 1812-1815. https://doi.org/10.1021/bp0341794
- Yagi, K. 2007. Applications of whole-cell bacterial sensors in biotechnology and environmental science. Appl. Microbiol. Biotechnol. 73, 1251-1258. https://doi.org/10.1007/s00253-006-0718-6