DOI QR코드

DOI QR Code

Applications of Microbial Whole-Cell Biosensors in Detection of Specific Environmental Pollutants

특이 환경오염물질 검출을 위한 미생물 세포 바이오센서의 활용

  • Shin, Hae-Ja (Energy Environmental Engineering Major, Division of Energy Bioengineering, Dongseo University)
  • 신혜자 (동서대학교 에너지생명공학부 에너지환경공학)
  • Received : 2010.09.27
  • Accepted : 2010.12.30
  • Published : 2011.01.30

Abstract

Microbial whole-cell biosensors can be excellent analytical tools for monitoring environmental pollutants. They are constructed by fusing reporter genes (e.g., lux, gfp or lacZ) to inducible regulatory genes which are responsive to the relevant pollutants, such as aromatic hydrocarbons and heavy metals. A large spectrum of microbial biosensors has been developed using recombinant DNA technology and applied in fields as diverse as environmental monitoring, medicine, food processing, agriculture, and defense. Furthermore, their sensitivity and target range could be improved by modification of regulatory genes. Recently, microbial biosensor cells have been immobilized on chips, optic fibers, and other platforms of high-throughput cell arrays. This paper reviews recent advances and future trends of genetically modified microbial biosensors used for monitoring of specific environmental pollutants.

미생물 세포 바이오센서는 환경오염물질의 모니터링을 위한 좋은 분석도구가 될 수 있다. 이는 리포터유전자들(예로, lux, gfp or lacZ)을 방향족 화합물이나 중금속과 같은 오염물질에 반응하는 유도 조절유전자와 결합하여 만든다. 이러한 유전자 재조합기술을 이용하여 많은 종류의 미생물 바이오센서가 개발되었으며 환경, 의학, 식품, 농업, 및 방위등 다양한 분야에서 활용되고 있다. 또한 바이오센서의 민감도와 검출범위는 조절유전자의 변형을 통해 증가시킬 수있다. 최근에는 미생물 바이오센서 세포를 고효율 검색용 세포 에레이의 칩, 광섬유 등에 고착하여 활용하고 있다. 본 논문은 특이 오염물질의 검출을 위한 유전자 재조합으로 만든 미생물 세포 바이오센서의 현황과 미래에 대해 고찰한다.

Keywords

References

  1. Bechor, O., D. R. Smulski, T. K. Van Dyk, and R. A. LaRossa. 2002. Recombinant microorganisms as environmental biosensors: pollutants detection by Escherichia coli bearing fab'::lux fusions. J. Biotechnol. 94, 125-132. https://doi.org/10.1016/S0168-1656(01)00423-0
  2. Belkin, S. 2003. Microbial whole-cell sensing systems of environmental pollutants. Curr. Opin. Microbiol. 6, 206-212. https://doi.org/10.1016/S1369-5274(03)00059-6
  3. Biran, I., R. Babai, K. Levcov, J. Rishpon, and E. Z. Ron. 2000. Online and in situ monitoring of environmental pollutants: electrochemical biosensing of cadmium. Environ. Microbiol. 2, 27-33. https://doi.org/10.1046/j.1462-2920.2000.00074.x
  4. Dawson, J. J. C., C. O. Iroegbu, H. Maciel, and G. I. Paton. 2008. Application of luminescent biosensors for monitoring the degradation and toxicity of BTEX compound in soils. J. App. Microbiol. 104, 141-151.
  5. Deng, L., S. Guo, M. Zhou, L. Liu, C. Liu, and S. Dong. 2010. A silk derived carbon fiber mat modifided with Au@Pt urchilike nanoparticles: A new platform as electrochemical microbial biosensor. Biosens. Bioelectron. 25, 2189-2193. https://doi.org/10.1016/j.bios.2010.02.005
  6. Diaz, E. and M. A. Prieto. 2000. Bacterial promoters triggering biodegradation of aromatic pollutants. Curr. Opin. Biotechnol. 11, 467-475. https://doi.org/10.1016/S0958-1669(00)00126-9
  7. Diplock, E. E., D. P. Mardlin, K. S. Killham, and G. I. Paton. 2009. Predicting bioremediation of hydrocarbons: Laboratory to field scale. Environ. Pollut. 157, 1831-1840. https://doi.org/10.1016/j.envpol.2009.01.022
  8. D’Souza, S. F. 2001. Microbial biosensors. Biosens. Bioelectron. 16, 337-353. https://doi.org/10.1016/S0956-5663(01)00125-7
  9. Durrieu, C. and C. Tran-Minh. 2002. Optical algal biosensor using alkaline phosphatase for determination of heavy metals. Ecotoxicol. Environ. Saf. 51, 206-209. https://doi.org/10.1006/eesa.2001.2140
  10. Farre, M., C. Goncales, S. Lacorte, D. Barcelo, and M. F. Alpendurada. 2002. Pesticide toxicity assessment using an electrochemical biosensor with Pseudomonas putida and a bioluminescence inhibition assay with Vibrio fischeri. Anal. Bioanal. Chem. 373, 696-703. https://doi.org/10.1007/s00216-002-1313-z
  11. Fujimoto, H., M. Wkabayashi, H. Yamashiro, I. Maeda, K. Isoda, M. Kondoh, M. Kawase, H. Miyasaka, and K. Yagi. 2006. Whole-cell arsenite biosensor using photosynthetic bacterium Rhodovulum sulfidophilum: Rhodovulum sulfidophilum as an arsenite biosensor. Appl. Microbiol. Biotechnol. 73, 332-338. https://doi.org/10.1007/s00253-006-0483-6
  12. Galvao, T. C. and V. de Lorenzo. 2007. Transcriptional regulators a la carte: engineering new effector specificities in bacterial regulatory proteins. Curr. Opin. Biotechnol. 17, 34-42.
  13. Hakkila, K., T. Green, P. Lesknen, A. Ivask, R. Marks, and M. Virta. 2004. Detection of bioavailable heavy metals in EILATox-oregon samples using whole-cell luminescent bacterial sensors in suspension or immobilized onto fibre-optic tips. J. Appl. Toxicol. 24, 333-342. https://doi.org/10.1002/jat.1020
  14. Hansen, L. H. and S. J. Sorensen. 2001. The use of whole-cell biosensors to detect and quantify compounds or conditions affecting biological systems. Microb. Ecol. 42, 483-444. https://doi.org/10.1007/s00248-001-0025-9
  15. Harms, H., M. C. Wells, and J. R. van der Meer. 2006. Whole-cell living biosensors-are they ready for environmental application? Appl. Microbiol. Biotechnol. 70, 273-280. https://doi.org/10.1007/s00253-006-0319-4
  16. Ivask, A., M. Virta, and A. Kahru. 2001. Detection of organomercurials with sensor bacteria. Soil Biol. Biochem. 34, 1439-1447.
  17. Keane, A., P. Phoenix, S. Goshal, and P. C. Lau. 2002. Exposing culprit organic pollutants: a review. J. Microbiol. Methods 49, 103-119. https://doi.org/10.1016/S0167-7012(01)00382-7
  18. Kim, M. N., H. H. Park, W. K. Lim, and H. J. Shin. 2005. Construction and comparison of Escherichia coli whole-cell biosensors capable of detecting aromatic compounds. J. Microbiol. Methods 60, 235-245. https://doi.org/10.1016/j.mimet.2004.09.018
  19. Kumar, J., S. K. Jha, and S. F. D’Souza. 2006. Optical microbial biosensors for detection of methyl parathion pesticide using Flavobacterium sp. whole cells adsorbed on glass fiber filters as disposable biocomponent. Biosens. Bioelectron. 15, 2100-2105.
  20. Lei, Y., W. Chen, and A. Mulchandani. 2006. Microbial biosensors. Anal. Chim. Acta. 568, 200-210. https://doi.org/10.1016/j.aca.2005.11.065
  21. Lei, Y., P. Mulchandani, J. Wang, W. Chen, and A. Mulchandani. 2005. Highly sensitive and selective amperometric microbial biosensor for direct determination of p-nitropenyl- substituted organophosphate nerve agents. Environ. Sci. Technol. 39, 8853-8857. https://doi.org/10.1021/es050720b
  22. Marques, S., I. Aranda-Olmedo, and J. L. Ramos. 2006. Controlling bacterial physiology for optimal expression of gene reporter constructs. Curr. Opin. Biotechnol. 17, 50-56. https://doi.org/10.1016/j.copbio.2005.12.001
  23. Matsui, N., T. Kaya, K. Nagamine, T. Yasukawa, H. Shiku, and T. Matsue. 2006. Electrochemical mutagen screening using microbial chip. Biosens. Bioelectron. 21, 1202-1209. https://doi.org/10.1016/j.bios.2005.05.004
  24. Medintz, I. L. and J. R. Deschamps. 2006. Maltose-binding protein: a versatile platform for prototyping biosensing. Curr. Opin. Biotechnol. 17, 17-27. https://doi.org/10.1016/j.copbio.2006.01.002
  25. Mulchandani, P., W. Chen, A. Mulchandani, J. Wang, and L. Chen. 2001. Amperometric microbial biosensor for direct determination of organophosphate pesticides using recombinant microorganism with surface expressed organophosphorous hydrolase. Biosens. Bioelectron. 16, 433-437. https://doi.org/10.1016/S0956-5663(01)00157-9
  26. Norman, A., L. H. Hansen, and S. J. Sorensen. 2005. Construction of a ColD cda promoter-based SOS-green fluorescent protein whole-cell biosensor with higher sensitivity toward genotoxic compounds than constructs based on recA, umuDC, or sul4 promoters. Appl. Environ. Microbiol. 71, 2338-2346. https://doi.org/10.1128/AEM.71.5.2338-2346.2005
  27. Oda, Y., K. Funasaka, M. Kitano, A. Nakama, and T. Yoshikura. 2004. Use of a high-throughput umu-microplate test system for rapid detection of genotoxicity produced by mutagenic carcinogens and airborne particulate matter. Environ. Mol. Mutag. 43, 10-19. https://doi.org/10.1002/em.10209
  28. Odaci, D., S. Timur, and A. Telefoncu. 2009. A microbial biosensor based on bacterial cells immobilized on chitosan matrix. Bioelectrochem. 75, 77-82. https://doi.org/10.1016/j.bioelechem.2009.01.002
  29. Paitan, Y., I. Biran, N. Shechter, D. Biran, J. Rishpon, and E. Z. Ron. 2004. Monitoring aromatic hydrocarbons by whole cell electrochemical biosensors. Anal. Biochem. 335, 175-183. https://doi.org/10.1016/j.ab.2004.08.032
  30. Park, H. H., H. Y. Lee, W. K. Lim, and H. J. Shin. 2005. NahR: effects of replacements at Asn 169 and Arg 248 on promoter binding and inducer recognition. Arch. Biochem. Biophys. 434, 67-74. https://doi.org/10.1016/j.abb.2004.10.020
  31. Park, H. H., W. K. Lim, and H. J. Shin. 2005b. In vitro binding of purified NahR regulatory protein with promoter Psal. Biochim. Biophys. Acta. 1725, 247-255. https://doi.org/10.1016/j.bbagen.2005.05.015
  32. Park, S. M., H. H. Park, W. K. Lim, and H. J. Shin. 2003. A new variant activator involved in the degradation of phenolic compounds from a strain of Pseudomonas putida. J. Biotechnol. 103, 227-236. https://doi.org/10.1016/S0168-1656(03)00122-6
  33. Paton, G. I., B. J. Reid, and K. T. Semple. 2009. Application of a luminescence-based biosensor for assessing naphthalene biodegradation in soils from a manufactured gas plant. Environ. Pollut. 157, 1643-1648. https://doi.org/10.1016/j.envpol.2008.12.020
  34. Peitzsch, N., G. Eberz, and D. H. Nies. 1998. Alcaligenes eutrophus as a bacterial chromate sensor. Appl. Environ. Microbiol. 64, 453-458.
  35. Petanen, T., M. Virta, M. Karp, and M. Romantschuk. 2001. Construction and use of broad host range mercury and arsenite sensor plasmids in the soil bacterium Pseudomonas fluorescens OS8. Microb. Ecol. 41, 360-368.
  36. Ron, E. Z. 2007. Biosensing environmental pollution. Curr. Opin. Biotechnol. 18, 252-256. https://doi.org/10.1016/j.copbio.2007.05.005
  37. Shin, H. J. 2010. Development of highly-sensitive microbial biosensors by mutation of the nahR regulatory gene. J. Biotechnol. 150, 246-250.
  38. Shin, H. J., H. H. Park, and W. K. Lim. 2005. Freeze-dried recombinant bacteria for on-site detection of phenolic compounds by color change. J. Biotechnol. 119, 36-43. https://doi.org/10.1016/j.jbiotec.2005.06.002
  39. Sorensen, S. J., M. Burmolle, and L. H. Hansen. 2006. Making bio-sense of toxicity: new developments in whole-cell biosensors. Curr. Opin. Biotechnol. 17, 11-16. https://doi.org/10.1016/j.copbio.2005.12.007
  40. Stiner, L. and L. J. Halverson. 2002. Development and characterization of a green fluorescent protein-based bacterial biosensor for bioavailable toluene and related compounds. Appl. Environ. Microbiol. 68, 1962-1971. https://doi.org/10.1128/AEM.68.4.1962-1971.2002
  41. Stocker, J., D. Balluch, M. Gsell, H. Harms, J. S. Feliciano, K. A. Malick, S. Daunert, and J. R. van der Meer. 2003. Development of a set of simple bacterial biosensors for quantitative and rapid field measurements of arsenite and arenate in potable water. Environ. Sci. Technol. 37, 4743-4750. https://doi.org/10.1021/es034258b
  42. Tani, H., K. Maehana, and T. Kamidate. 2004. Chip-based bioassay using bacterial sensor strains immobilized in three-dimensional microfuidic network. Anal. Chem. 76, 6693-6697. https://doi.org/10.1021/ac049401d
  43. Tecon, R. and J. R. van der Meer. 2006. Information from single-cell bacteria biosensors: what is it good for? Curr. Opin. Biotechnol. 17, 4-10. https://doi.org/10.1016/j.copbio.2005.11.001
  44. Tibazarwa, C., P. Corbisier, M. Mench, A. Bossus, P. Solda, M. Mergeay, L. Wyns, and D. van der Lelie. 2001. A microbial biosensor to predict bioavailable nickel in soil and its transfer to plants. Environ. Pollut. 113, 19-26. https://doi.org/10.1016/S0269-7491(00)00177-9
  45. Trang, P. T., M. Berg, P. H. Viet, N. Van Mui, and J. R. van der Meer. 2005. Bacterial bioassay for rapid and accurate analysis of arsenic in highly variable groundwater samples. Environ. Sci. Technol. 39, 7625-7630. https://doi.org/10.1021/es050992e
  46. van der Meer, J. R., D. Tropel, and M. Jaspers. 2004. Illuminating the detection chain of bacterial bioreporters. Environ. Microbiol. 6, 1005-1020. https://doi.org/10.1111/j.1462-2920.2004.00655.x
  47. Vedrine, C., J. C. Leclerc, C. Durrieu, and C. Tran-Minh. 2003. Optical whole-cell biosensor using Chlorella vulgaris designed for monitoring herbicides. Biosens. Bioelectron. 18, 457-463. https://doi.org/10.1016/S0956-5663(02)00157-4
  48. Vollmer, A. C. and T. K. Van Dyk. 2004. Stress responsive bacteria: Biosensors as environmental monitors. Adv. Microb. Physiol. 49, 131-174. https://doi.org/10.1016/S0065-2911(04)49003-1
  49. Werlen, C., M. C. M. Jaspers, and J. R. van der Meer. 2004. Measurement of biologically available naphthalene in gas and aqueous phases by use of a Pseudomonas putida biosensor. Appl. Environ. Microbiol. 70, 43-51. https://doi.org/10.1128/AEM.70.1.43-51.2004
  50. Xu, Z., A. Mulchandani, and W. Chen. 2003. Detection of benzene, toluene, ethyl benzene, and xylenes (BTEX) using toluene dioxygenase-peroxidase coupling reactions. Biotechnol. Prog. 19, 1812-1815. https://doi.org/10.1021/bp0341794
  51. Yagi, K. 2007. Applications of whole-cell bacterial sensors in biotechnology and environmental science. Appl. Microbiol. Biotechnol. 73, 1251-1258. https://doi.org/10.1007/s00253-006-0718-6