DOI QR코드

DOI QR Code

Physiological Changes of Saccharomyces cerevisiae KNU5377 Occurred in the Process of the 48-hour Ethanol Fermentation at 40℃

40℃ 48시간 에탄올발효 과정 중 일어나는 Saccharomyces cerevisiae KNU5377의 생리 변화

  • Kwak, Sun-Hye (Department of Microbiology, Graduate School, Kyungpook National University) ;
  • Kim, Il-Sup (Department of Microbiology, Graduate School, Kyungpook National University) ;
  • Kang, Kyung-Hee (Department of Microbiology, Graduate School, Kyungpook National University) ;
  • Lee, Jung-Sook (Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Jin, Ingn-Yol (Department of Microbiology, Graduate School, Kyungpook National University)
  • 곽선혜 (경북대학교 대학원 미생물학과) ;
  • 김일섭 (경북대학교 대학원 미생물학과) ;
  • 강경희 (경북대학교 대학원 미생물학과) ;
  • 이정숙 (한국생명공학연구원 미생물자원센터) ;
  • 진익렬 (경북대학교 대학원 미생물학과)
  • Received : 2010.12.27
  • Accepted : 2010.12.30
  • Published : 2011.01.30

Abstract

In this study, physiological changes in a thermotolerant yeast Saccharomyces cerevisiae KNU5377 cell exposed to 48-hour alcohol fermentation at $40^{\circ}C$ were investigated. After 12 hours of alcohol fermentation at $40^{\circ}C$, the $C_{16:1}$ unsaturated acid of plasma membrane increased to 1.5 times more than the $C_{16:0}$ saturated fatty acid, and to about 2 times more for the $C_{18:1}$ unsaturated fatty acid. Fermentation at both $30^{\circ}C$ and $37^{\circ}C$ fermentation showed the same pattern as that done at $40^{\circ}C$. The pH of the alcohol-fermentation medium was reduced to pH 4.1 from a starting pH of 6.0 through the 12-hr fermentation and then maintained this level during the continuing fermentation. With the process of fermentation, the remaining glucose was reduced, but its amount remaining during the $40^{\circ}C$-fermentation was less reduced than those fermented at $30^{\circ}C$ and $37^{\circ}C$. In the study investigating the changing pattern of cellular proteins in the alcohol-fermenting cells, the SDS-PAGE and 2-D data indicated the most expressed dot was phosphoglycerate kinase, which is one enzyme involved in glycolysis. Why this enzyme was most expressed in the cells exposed to unfavorable conditions such as high temperature, increasing concentration of produced alcohol and long time exposure to other stress factors remains unsolved.

포도당 20%와 효모엑기스가 함유된 배지에서 $40^{\circ}C$에서 48시간에 걸친 에탄올발효 과정 중에 일어나는 고온성 알코올 발효 효모균주 Saccharomyces cerevisiae KNU5377의 세포 내에서 일어나는 생리적 변화를 살펴보고자 했다. 그 결과, 이 발효 효모균주는 $40^{\circ}C$ 48시간의 발효로써 11.4% alcohol을 생성하여, 고온발효인데도 불구하고 우수한 발효능을 가진 것을 확인할 수 있었다. 또한 12시간 발효과정동안 배지의 pH가 시작단계의 pH 6.0이 4.1로 내려갔으며, 이후 에탄올발효가 완성될 때까지 거의 변화하지 않고 이 값으로 유지되었다. 발효 12시간이 지나면서 세포막의 지방산의 조성은 불포화지방산인 $C_{16:1}$ (palmitoleic acid)가 포화지방산인 $C_{16:0}$ (palmitic acid)보다 1.5배나 증가하였으며, $C_{18:1}$보다는 2배 가까이 증가하여 구성되어 있었다. 48시간 배양한 세포의 2차 전기영동(2-D)을 통한 세포내 단백질의 발현정도를 proteomics분석법으로 살펴본 바, phosphoglycerate kinase가 가장 크게 발현했음을 Mass Spectrometry를 통해 알 수 있었다. 그 뒤를 이어 adenylate kinase, Cys3p, Tdh3p, translational elongation factor 등이 크게 발현된 것을 알게 되었다. 이들은 직간접적으로 해당과정에 관여하는 인자들 이어서, 고온 장시간에 걸친 에탄올발효를 하는 이 발효 효모균주의 세포에게는 생존과 에탄올발효를 위하여 해당과정 관여 인자가 중요한 역할을 하고 있다는 것을 강력히 시사하였다.

Keywords

References

  1. Andrew, J. L. 1999. 2-D proteome analysis protocols. pp. 31-34, In Methods in Molecular Biology, Humana press.
  2. Banat, I. M., P. Nigam, and R. Marchant. 1992. Isolation of thermotolerant, fermentative yeasts growing l${52^{\circ}C}$ and producing ethanol at ${45^{\circ}C}$ and ${50^{\circ}C}$. World J. Microbiol. Biotechnol. 8, 259-263. https://doi.org/10.1007/BF01201874
  3. Baxi, M. D. and J. K. Vishwanatha. 1995. Uracil DNA-glycosylase/ glyceraldehyde-3-phosphate dehydrogenase is an Ap4A binding protein. Biochemistry 30, 9700-9707.
  4. Beis, I. and E. A. Newsholme. 1975. The contents of adenine nucleotides, phosphagens and some glycolytic intermediates in resting muscles from vertebrates and invertebrates. Biochem. J. 152, 23-32.
  5. Benchekroun, K. and R. Bonaly. 1992. Physiological properties and plasma membrane composition of Saccharomyces cerevisiae grown in sequential batch culture and in presence of surfactant Appl. Microbiol. Biotechnol. 36, 673-678.
  6. Braley, R. and P. W. Piper. 1997. The C-terminus of yeast plasma membrane H+-ATPase is essential for the regulation of this enzyme by heat shock protein Hsp30, but not for stress activation. FEBS Lett. 418, 123-126. https://doi.org/10.1016/S0014-5793(97)01359-8
  7. Casey, G. P. and W. M. Ingledew. 1986. Ethanol tolerance in yeasts. CRC Crit. Rev. Microbiol. 13, 219-280. https://doi.org/10.3109/10408418609108739
  8. Chatterjee, M. T., S. A. Khalawan, and B. P. G. Curran. 1997. Alterations in cellular lipids may be responsible for the transient nature of the yeast heat shock response. Microbiology 143, 3063-3068. https://doi.org/10.1099/00221287-143-9-3063
  9. D'Amore, T. and G. G. Stewart. 1987. Ethanol tolerance of yeast. Enzyme Microb. Technol. 9, 322-330. https://doi.org/10.1016/0141-0229(87)90053-6
  10. Hughes, D. B., N. J. Tudroszen, and C. J. Moye. 1984. The effect of temperature on the kinetics of ethanol production by a thermotolerant strain of Kluyveromyces marxianus. Biotechnol. Lett. 6, 1-6. https://doi.org/10.1007/BF00128221
  11. Kim, I., I. Jin, and H. Yoon. 2011. Decarbonylated cyclophilin A Cpr1 protein protects Saccharomyces cerevisiae KNU5377Y when exposed to stress induced by menadione. Cell Stress Chaperones 16, 1-14. https://doi.org/10.1007/s12192-010-0215-9
  12. Kim, I., H. Yun, and I. Jin. 2007. Comparative proteomic analyses of the yeast Saccharomyces cerevisiae KNU5377 strain against menadione-induced oxidative stress. J. Microbiol. Biotechnol. 17, 207-217.
  13. Kim I., H. Yun, H. Iwahashi, and I. Jin. 2006. Genome-wide expression analyses of adaptive response against menadione- incuced oxidative stress in Saccharomyces cerevisiae KNU5377. Process Biochem. 41, 2305-2313. https://doi.org/10.1016/j.procbio.2006.06.005
  14. Kim, I., H. Yun, H. Choi, H. Sohn, C. Yu, J. Kim, and I. Jin. 2006. Construction of hsf1 knockout-mutant of a thermotolerant yeast strain Saccharomyces cerevisiae KNU5377. Korean J. Life Sci. 16, 454-458. https://doi.org/10.5352/JLS.2006.16.3.454
  15. Kim, J. W., I. N. Jin, and J. H. Seu. 1995. Isolation of Saccharomyces cerevisiae KNU5377 F38-1, a thermotolerant yeast for fuel alcohol production at higher temperature. Korean J. Appl. Microbiol. Biotechnol. 23, 617-623.
  16. Kim, J. W., S. H. Kim, and I. N. Jin. 1995. The fermentation characteristics of S. cerevisiae F38-1, a thermotolerant yeast isolated for fuel alcohol production at elevated temperature. Korean J. Appl. Microbiol. Biotechnol. 23, 624-631.
  17. McAlister, L. and M. J. Holland. 1985. Differential expression of the three yeast glyceraldehyde-3-phosphate dehydrogenase genes. J. Biol. Chem. 28, 15019-15027.
  18. McNulty, S. E. and W. A. Toscano Jr. 1995. Transcriptional regulation of glyceraldehyde-3-phosphate dehydrogenase by 2,3,7,8-tetrachlorodibenzo-p-dioxin. Biochem. Biophys. Res. Commun. 1, 165-171.
  19. Mager, W. H. and P. Moradas-Ferriera. 1993. Stress response of yeast. Biochem. J. 290, 1-13.
  20. Nilssona, A., B. J. Norbecka, R. Oelza, A. Blomberga, and L. Gustafsson. 2001. Fermentative capacity after cold storage of baker's yeast is dependent on the initial physiological state but not correlated to the levels of glycolytic enzymes. Internl. J. Food Microbiol. 30, 111-124.
  21. Paik, S. K. 2002. Biophysical, physiological and microarray analyses for the thermotolerance of Saccharomyces cerevisiae KNU5377. pp. 1-175, PhD Thesis, Kyungpook National University, Daegu, Korea.
  22. Paik, S. K., I. N. Jin, H. S. Yun, S. H. Park, S. C. Shin, J. W. Kim, K. S. Shin, J. S. Lee, and Y. H. Park. 2002. Saccharomyces cerevisiae KNU5377 with multiple stress tolerance and its potential as a worldwide on-site industrial strain for alcohol fermentation. Korean J. Microbiol. Biotechnol. 30, 425-429.
  23. Piper, P. W. 1995. The heat shock and ethanol stress responses of yeast exhibit extensive similarity and functional overlap. FEMS Microbiol. Lett. 134, 121-127. https://doi.org/10.1111/j.1574-6968.1995.tb07925.x
  24. Piper, P. W., C. Ortiz-Calderon, C. Holyoak, P. Coote, and M. Cole. 1997. Hsp30, the integral plasma membrane heat shock protein of Saccharomyces cerevisiae, is a stress-inducible regulator of plasma membrane H+-ATPase. Cell Stress Chaperones 2, 12-24. https://doi.org/10.1379/1466-1268(1997)002<0012:HTIPMH>2.3.CO;2
  25. Plesset, J., C. A. Palm, and C. S. McLaughin. 1982. Induction of heat shock proteins and thermotolerance by ethanol in Saccharomycese cerevisiae. Biochem. Biophys. Res. Commun. 108, 1340-1345. https://doi.org/10.1016/0006-291X(82)92147-7
  26. Quenten, P. S. and C. Timothy. 2002. Cox complementation of a yeast CYC3 deficiency identifies anX-linked mammalian activator of apocytochrome c. Genomics 79, 51-57. https://doi.org/10.1006/geno.2001.6677
  27. Rabilloud, T. and M. Chevallet. 2000. Two-dimensional gel electrophoresis and identification methods, pp. 9-29, In Proteome Research, Springer.
  28. Service, R. F. 2007. Cellulosic ethanol: biofuel researchers prepare to reap a new harvest. Science 315, 1488-1491. https://doi.org/10.1126/science.315.5818.1488
  29. Singh, R., J. Valcarcel, and M. R. Green. 1995. Distinct binding specificities and functions of higher eukaryotic polypyrimidine tract-binding proteins. Science 5214, 1173-1176.
  30. Suutari, M., K. Liukkonen, and S. Laakso. 1990. Temperature adaptation in yeasts: the role of fatty acids. J. Gen. Microbiol. 136, 1469-1474. https://doi.org/10.1099/00221287-136-8-1469
  31. Van Uden, N. 1984. Temperature profiles of yeasts. Adv. Microb. Physiol. 25, 195-251.
  32. Watson, K. 1987. Temperature relations, pp 41-71, In Rose, A. H. and J. S. Harrison. (eds.), The Yeasts. Academic Press, London.