DOI QR코드

DOI QR Code

생물 계면활성제를 생산하는 Pseudomonas sp. Z1의 특성

Characteristics of Biosurfactant Producing Pseudomonas sp. Z1

  • 장동호 (한남대학교 생명공학과) ;
  • 고은정 (한남대학교 생명공학과) ;
  • 박경량 (한남대학교 생명공학과)
  • 투고 : 2010.11.29
  • 심사 : 2010.12.28
  • 발행 : 2011.01.30

초록

대전일원의 유류오염 지역의 토양으로부터 원유를 단일 탄소원으로 이용하는 총 145균주를 순수분리 하였고, 이중 생물 계면활성제 생성능이 가장 우수한 한 균주를 최종 선별하여 형태 및 생리 생화학적 특성을 조사하고 16S rRNA 염기서열을 분석을 통하여 동정한 결과 Pseudomonas sp.로 확인되어 Pseudomonas sp. Z1이라 명명하였다. 최종 선별된 Pseudomonas sp. Z1은 클로람페니콜과 암피실린 등의 항생제와 리튬, 망간, 바륨 등의 중금속에 대해 강한 내성을 갖고 있었고, 최적 온도와 pH는 각각 $30^{\circ}C$와 pH 6.0-7.0으로 확인되었다. Pseudomonas sp. Z1이 생성하는 생물 계면활성제는 배양 10시간 이후부터 배양액의 표면장력이 급격히 감소해, 배양 21시간 후에 최대 28 dyne/cm까지 감소되었고, 2% 이상의 NaCl을 첨가한 경우 배양액의 생물계면활성제의 활성이 감소하였다.

One hundred forty five bacterial colonies which were able to degrade crude oil were isolated from soil samples that were contaminated with oil in the Daejon area. Among these colonies, one bacterial strain was selected for this study based on its low surface tension ability, and this selected bacterial strain was identified as Pseudomonas sp. Z1 through physiological-biochemical tests and analysis of its 16S rRNA sequence. Pseudomonas sp. Z1 showed a high resistance to antibiotics such as chloramphenicol and ampicillin, as well as heavy metals such as lithium, manganese, and barium. It was found that the optimal pH and temperature for biosurfactant production of Pseudomonas sp Z1 were pH 6.0-7.0 and $30^{\circ}C$, respectively. After ten hours of inoculation, the biosurfactant activity of the culture broth decreased rapidly, and had maximum surface tension (28 dyne/cm) after twenty-one hours incubation. The biosurfactant activity of the culture broth was also decreased up to 2% NaCl concentration.

키워드

참고문헌

  1. Arima, K., A. Kakiunma, and G. Tamura. 1968. Surfactin a crystaline peptide lipid surfactant produced by Bacillus subtilis : Isolation, characterization and its inhibition of fibirin clot formation. Biochem. Biophys. Res. Commun. 31, 488-494. https://doi.org/10.1016/0006-291X(68)90503-2
  2. Atlas, R. M. and R. Bartha. 1972. Biodegradation of petroleum in seawater at low temperature. Can. J. Microbial. 18, 1851-1855. https://doi.org/10.1139/m72-289
  3. Banat, I. M., R. S. Makkar, and S. S. Cameotra. 2000. Potential commercial applications of microbial surfactants. Appl. Microbiol. Biotechnol. 53, 495-508. https://doi.org/10.1007/s002530051648
  4. Barathi, S. and N. Vasudevan. 2001. Utilization of petroleum hydrocarbons by Pseudomonas fluorescens isolated from a contaminated soil. Environ. Int. 26, 413-416. https://doi.org/10.1016/S0160-4120(01)00021-6
  5. Cha, M. S., E. G. Lim., K. H. Lee, S. J. Cho, H. J. Son, and S. J. Lee. 2002. Optimal culture conditions for production of environment-friendly biosurfactant by Pseudomonas sp. EL-G527. J. Environ. Sci. 11, 177-182. https://doi.org/10.5322/JES.2002.11.3.177
  6. Cirigliano, M. C. and G. M. Carman. 1984. Isolation of a bioemusifier from Candida lipolytica. Appl. Environ. Microbiol. 48, 747-750.
  7. Dehghan-Noude, G., M. Housaindokht, and B. S. Bazzaz. 2005. Isolation, characterization, and investigation of surface and hemolytic activities of a lipopeptide biosurfactant produced by Bacillus subtilis ATCC6633. J. Microbiol. 43, 272-276.
  8. Desai, J. D. and I. M. Banat. 1997. Microbial production of surfactants and their commercial potential. Microbiol. Mol. Biol. Rev. 61, 47-64.
  9. Deshpande S., B. J. Shiau, D. Wade, D. A. Sabatini and J. H. Harwell. 1999. Surfactant selection for enhancing ex situ soil washing. Water Res. 33, 351-360. https://doi.org/10.1016/S0043-1354(98)00234-6
  10. Dibble, J. T. and R. Bartha. 1979. Effects of environmental parameters on the biodegradation of oil sludge. Appl. Environ. Microbiol. 37, 729-739.
  11. Doong, R. A. and W. G. Lei. 2003. Solubilization and mineralization of polycyclic aromatic hydrocarbons by Pseudomonas putida in the presence of surfactant. J. Hazard Mater. 96, 15-27. https://doi.org/10.1016/S0304-3894(02)00167-X
  12. Hisatsuka, K., T. Nakahara, Y. Sano, and K. Yamada. 1971. Formation of rhamnolipid by Pseudomonas aeroginoas: Its function in hydrocarbon formentations. Agric. Biol. Chem. 35, 686-692. https://doi.org/10.1271/bbb1961.35.686
  13. Inoue, S. 1998. Biosurfactant in cosmetic application. Proceedings of the world conference on biotechnology for the fats and oils industry. J. Am. Oil Chem. Soc. 65, 206-210.
  14. Jobson, A., F. D. Cook, and D. W. S. Westlake. 1972. Microbial utilization of crude oil. Appl. Microbiol. 23, 1082-1089.
  15. Kim G. J., I. S. Lee, and K. R. Park. 1999. Characteristics of wasted lubricant degradation by Acinetobacter lwoffii I6C-1. J. Life Sci. 9, 76-81.
  16. Krieg, N. R. and J. G. Holt. 1984. Bergey's manual of systematic bacteriology. Williams, Wikins and Baltimore.
  17. Lee, S. C., Y. J. Jung, J. S. Yoo, Y. S. Cho, I. H. Cha, and Y. L. Choi. 2002. Characteristics of biosurfactants produced by Bacillus sp. LSC11. Korean J. Life Sci. 12, 745-751. https://doi.org/10.5352/JLS.2002.12.6.745
  18. Lourith, N. and M. Kanlayavattanakul. 2009. Natural surfactants used in cosmetics: glycolipids. Int. J. Cosmet. Sci. 31, 255-261. https://doi.org/10.1111/j.1468-2494.2009.00493.x
  19. MacFaddin, J. F. 1984. Biochemical tests for identification for medical bacteria. 2nd ed., Williams and Wilkins Co., Baltimore, USA.
  20. Mulkins-philips, G. J. and T. E. Stewart. 1974. Effect of environmental parameters on bacterial degradation of bunker C oil, crude oil, and hydrocarbons. Appl. Microbiol. 28, 915-922.
  21. Mulligan, C. N. and B. F. Gibbs, and N. Kosaric. 1993. Biosurfactants-production, properties, application, M. Dekker, New York, 329-372.
  22. Poremba, K., W. Gunkel, S. Lang, and F. Wagner. 1991. Marine biosurfactants, toxicity testing with marine microorganisms and comparison with synthetic surfactants. Z. Naturforch C 46, 210-216.
  23. Rahman, K. S. M., J. Thahira-Rahman, S. McClean, R. Marchant, and I. M. Banat. 2002. Rhamnolipid biosurfactants production by strains of Pseudomonas aeruginosa using low cost raw materials. Biotechnol. Prog. 18, 1277−1281. https://doi.org/10.1021/bp020071x
  24. Rodrigues, L., I. M. Banat, J. Teixeira, and R. Oliveira. 2006. Biosurfactants: potential applications in medicine. J. Antimicrob. Chemother. 57, 609-618. https://doi.org/10.1093/jac/dkl024
  25. Rosenberg, E. 1982. Properties of hydrocarbon in water emulsions stabilized by Acinebacter sp. RAG-1 emulsion. Biotech. Bioeng. 24, 281-292. https://doi.org/10.1002/bit.260240203
  26. Rosenberg. E., A. Zuckerberg, C. Rubinoritz, and D. L. Gutnick. 1979. Emulsifier of Arthrobacter RAG-1: Isolation and emulsifying properties. Appl. Environ. Microbiol. 37, 402-408.
  27. Santos, L. H., O. Kappeli, and A. Flechter. 1986. Dependence of Pseudomonas aeruginosa continous culture biosurfactant production on nutritional and environmental factors. Appl. Microbiol. Biotechnol. 21, 443-448.
  28. Shim, S. H., and K. R. Park. 2006. Characteristics of biosurfactant producing Pseudomonas sp. G314. Korean J. Microbiol. 42, 286-293.
  29. Wagner, D. B., G. R. Furnier, M. A. Saghai-Maroof, S. M. Williams, B. P. Dancik, and R. W. Allard. 1987. Chloroplast DNA polymorphisms in lodgepole and jack pines and their hybrids. Proc. Natl. Acad. Sci. U.S.A. 84, 2097-2100. https://doi.org/10.1073/pnas.84.7.2097
  30. Walker, J. D. and R. R. Cowell. 1975. Some effects of petroleum on estuarine and marine microorganisms. Can. J. Microbiol. 21, 305-313. https://doi.org/10.1139/m75-044

피인용 문헌

  1. Characteristics of Biosurfactant Producing Pseudomonas sp. HN37 vol.50, pp.1, 2014, https://doi.org/10.7845/kjm.2014.2054
  2. sp. CB2 vol.53, pp.5, 2018, https://doi.org/10.1080/03601234.2018.1431458