DOI QR코드

DOI QR Code

Overexpression and Activity Analysis of Cystathionine γ-Lyase Responsible for the Biogenesis of H2S Neurotransmitter

새로운 신경전달물질 H2S 발생 효소, cystathionine γ-lyase의 대량발현 조건과 활성측정

  • Kim, Kyoung-Ran (Department of Applied chemistry, Kumoh National Institute of Technology) ;
  • Byun, Hae-Jung (Department of Applied chemistry, Kumoh National Institute of Technology) ;
  • Cho, Hyun-Nam (Department of Applied chemistry, Kumoh National Institute of Technology) ;
  • Kim, Jung-Hyun (Department of Applied chemistry, Kumoh National Institute of Technology) ;
  • Yang, Seun-Ah (The Center for Traditional Microorganism Resources (TMR), Keimyung University) ;
  • Jhee, Kwang-Hwan (Department of Applied chemistry, Kumoh National Institute of Technology)
  • 김경란 (금오공과대학교 응용화학과) ;
  • 변혜정 (금오공과대학교 응용화학과) ;
  • 조현남 (금오공과대학교 응용화학과) ;
  • 김정현 (금오공과대학교 응용화학과) ;
  • 양선아 (계명대학교 전통미생물자원개발 및 산업화연구(TMR) 센터)) ;
  • 지광환 (금오공과대학교 응용화학과)
  • Received : 2010.11.19
  • Accepted : 2010.01.03
  • Published : 2011.01.30

Abstract

There is a growing recognition of the significance of $H_2S$ as a biological signaling molecule involved in vascular and nervous system functions. In mammals, two enzymes in the transsulfuration pathway, cystathionine ${\beta}$-synthase (CBS) and cystathionine ${\gamma}$-lyase (CGL), are believed to be chiefly responsible for $H_2S$ biogenesis. Genetic inborn error of CGL leads to human genetic disease, cystathioninuria, by accumulating cystathionine in the body. This disease is secondarily associated with a wide range of diseases including diabetes insipidus and Down's syndrome. Although the human CGL (hCGL) overexpression is essential for the investigation of its function, structure, reaction specificity, substrate specificity, and protein-protein interactions, there is no clear report concerning optimum overexpression conditions. In this study, we report a detailed analysis of the overexpression conditions of the hCGL using a bacterial system. Maximum overexpression was obtained in conditions of low culture temperature after inducer addition, performing low aeration during overexpression, and using a low concentration inducer (0.1 mM, IPTG) for induction. Expressed hCGL was purified by His-tag affinity column chromatography and confirmed by Western blot using hCGL antibody and enzyme activity analysis. We also report that the His tag with TEV site attached protein exhibits 76% activity for ${\alpha}-{\gamma}$ elimination reaction with L-cystathionine and 88% for ${\alpha}-{\beta}$ elimination reaction with L-cysteine compared to those of wild type hCGL, respectively. His tag with TEV site attached protein also exhibits a 420 nm absorption maximum, which is attributed to the binding cofactor, pyridoxal 5'-phosphate (PLP).

질병과 밀접한 관계가 있는 hCGL 단백질의 경우 대량 배양 시 유도체를 사용하지 않아도 발현이 되는 점과 유전자 측면에서 조작이 쉬운 E.coli를 이용하여도 발현이 된다는 점에 있어서 중요한 이점을 가지고 있다. 본 연구에서는 배양되는 온도와 발현에 관련 있는 유도체의 농도, 600 nm에서의 균 성장 정도에 따른 유도체의 첨가 그리고 배지의 양을 조절하면서 유입되는 aeration의 조건으로 hCGL 단백질 발현의 최적의 조건 확립을 목적으로 하였다. 또 각 발생되는 inclusion body의 양을 측정하면서 보다 많은 가용성 단백질을 발현시키는 조건을 확립하고자 하였다. hCGL 단백질은 저온에서 보다 많은 양의 단백질이 발현되며 inhibitor의 억제를 담당하는 유도체의 농도와는 상관없이 발현이 되었다. 또한 균의 성장 정도에 따라 유도체의 첨가시기를 달리 하였을 때, 발현 비율에 차이는 있었으나 전체적인 단백질 양과 비교해 보면, 이는 hCGL 발현에 큰 영향을 미치지 않는다. 배지의 양을 달리하여 살펴본 aeration에 따른 hCGL 발현 정도는 배지의 부피가 15%일 때 높은 aeration으로 균의 양은 많았으나 목적 단백질인 hCGL의 발현은 aeration이 되지 않는 조건에서 더 잘되는 것을 확인하였다. 그리고 His-TEV-hCGL의 활성은 야생형 hCGL의 활성을 기준으로 하였을 때, L-cystathionine을 기질로 하였을 경우 76%, L-cysteine을 기질로 하였을 경우 88% 수준으로 유사한 활성을 나타내었고, 이는 손쉽게 정제 가능한 His-TEV-hCGL을 야생형을 대신하여 사용할 수 있음을 시사한다. 또한 His-TEV-hCGL이 야생형 hCGL과 같이, 427 nm에서 흡광을 가지는 것으로 보아 보효소PLP를 포함하고 있음을 알 수 있었다. 이로써 homocysteine 대사연구에 필수적인 hCGL 효소를 다량 얻는 방법을 확립하고, 관련 연구에 기여하리라 사료된다.

Keywords

References

  1. Boehning, D. and S. H. Snyder. 2003. Novel neural modulators. Annu. Rev. Neurosci. 26, 105-131. https://doi.org/10.1146/annurev.neuro.26.041002.131047
  2. Chauhan, V., A. Singh, S. M. Waheed, S. Singh, and R. Bhatnagar. 2001. Constitutive expression of protective antigen gene of Bacillus anthracis in Escherichia coli. Biochem. Biophys. Res. Commun. 283, 308-315. https://doi.org/10.1006/bbrc.2001.4777
  3. Chen, X., K. H. Jhee, and W. D. Kruger. 2004. Production of the neuromodulator $H_2S$ by cystathionine beta-synthase via the condensation of cysteine and homocysteine. J. Biol. Chem. 279, 52082-52086. https://doi.org/10.1074/jbc.C400481200
  4. Cho, H. N., L. Fan, D. C. Yoo, S. A. Yang, I. S. Lee, J. H. Kim, H. H. Baek, and K. H. Jhee. 2008. The MALDI-TOF MS determination of yeast proteins producing $H_2S$. Korean J. Biotechnol. Bioen. 23, 425-430.
  5. Eto, K. and H. Kimura. 2002. The production of hydrogen sulfide is regulated by testosterone and S-adenosyl-L-methionine in mouse brain. J. Neurochem. 83, 80-86. https://doi.org/10.1046/j.1471-4159.2002.01097.x
  6. Eto, K., T. Asada, K. Arima, T. Makifuchi, and H. Kimura. 2002. Brain hydrogen sulfide is severely decreased in Alzheimer's disease. Biochem. Biophys. Res. Commun. 293, 1485-1488. https://doi.org/10.1016/S0006-291X(02)00422-9
  7. Kamoun, P. 2004. $H_2S$, a new neuromodulator. Med. Sci. 20, 697-700.
  8. Kato, Y. and Y. Asano. 2003. High-level expression of a novel FMN-dependent heme-containing lyase, phenylacetal doxime dehydratase of Bacillus sp. Strain OxB-1, in heterologous hosts. Protein Expression and Purification 28, 131-139. https://doi.org/10.1016/S1046-5928(02)00638-1
  9. Kimura, H. 2002. Hydrogen sulfide as a neuromodulator. Mol. Neurobiol. 26, 13-19. https://doi.org/10.1385/MN:26:1:013
  10. Kraus, J. P., J. Hasek, V. Kozich, R. Collard, S. Venezia, B. Janosikova, J. Wang, S. P. Stabler, R. H. Allen, C. Jakobs, C. T. Finn, Y. H. Chien, W. L. Hwu, R. A. Hegele, and S. H. Mudd. 2009. Cystathionine gamma-lyase: clinical, metabolic, genetic, and structural studies. Mol. Genet. Metab. 97, 250-259. https://doi.org/10.1016/j.ymgme.2009.04.001
  11. Moore, P. K., M. Bhatia, S. Moochhala. 2003. Hydrogen sulfide: from the smell of the past to the mediator of the future? Trands. Pharmacol. Sci. 24, 609-611. https://doi.org/10.1016/j.tips.2003.10.007
  12. Nagasawa, T., H. Kanzaki, and H. Yamada. 1984. Cystathionine gamma-lyase of streptomyces phaeochromogenes. J. Biol. Chem. 259, 10393-10403.
  13. Ndisang, J. F., H. E. Tabien and R. Wang. 2004. Carbon monoxide and hypertension. J. Hypertens. 22, 1057-1074. https://doi.org/10.1097/00004872-200406000-00002
  14. Perla-Kajan, J., T. Twardowski, and H. Jakubowski. 2002. Mechanism of homocysteine toxicity in humans. Amino Acids. 32, 516-572.
  15. Singh, S., D. Padovani, R. A. Leslie, T. Chiku, and R. Banerjee. 2009. Relative Contributions of cystathionine betasynthase and gamma-cystathionase to $H_2S$ biogenesis via alternative trans-sulfuration reactions. J. Biol. Chem. 284, 22457-22466. https://doi.org/10.1074/jbc.M109.010868
  16. Singh, S. M. and A. K. Panda. 2005. Solubilization and refolding of bacterial inclusion body proteins. J. Biosci. Bioeng. 99, 303-310. https://doi.org/10.1263/jbb.99.303
  17. Soda, K. 1968. Microdetermination of D-amino acids and D-amino acid oxidase activity with 3,methyl-2-benzothiazolone hydrazone hydrochloride. Anal. Biochem. 25, 228-235. https://doi.org/10.1016/0003-2697(68)90095-X
  18. Sun, Q., R. Collins, S. Huang, L. Holmberg-Schiavone, G. S. Anand, C. H. Tan, S. Van-Den-Berg, L. W. Deng, P. K. Moore, T. Karlberg, and J. Sivaraman. 2009. Structural basis for the inhibition mechanism of human cystathionine gamma- lyase, an enzyme responsible for the production of $H_2S$. J. Biol. Chem. 284, 3076-3085. https://doi.org/10.1074/jbc.M805459200
  19. Uren, J. R. 1987. Cystathionine beta-lyase from Escherichia coli. Methods Enzymol. 143, 483-486. https://doi.org/10.1016/0076-6879(87)43086-3
  20. Ventura, S. and A. Villaverde. 2006. Protein quality in bacterial inclusion bodies. Trends Biotechnol. 24, 179-185. https://doi.org/10.1016/j.tibtech.2006.02.007
  21. Wang, R. 2002. Two's company, three's a crowd: can $H_2S$ be the third endogenous gaseous transmitter? FASEB J. 16, 1792-1798. https://doi.org/10.1096/fj.02-0211hyp
  22. White, R. H. 1983. An evaluation of the in vivo metabolism of cysteine in Escherichia coli using stable isotopes. Biomed. Mass Spectrom 12, 660-664.
  23. White, R. H. 1982. Metabolism of L-[sulfane-34S]thiocystine by Escherichia coli. Biochem. 18, 4271-4275.
  24. Yang, G., L. Wu, B. Jiang, W. Yang, J. Qi, K. Cao, Q. Meng, A. K. Mustafa, W. Mu, S. Zhang, S. H. Snyder, and R. Wang. 2008. $H_2S$ as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase. Science 322, 587-590. https://doi.org/10.1126/science.1162667