DOI QR코드

DOI QR Code

Cloning and Functional Analysis of Gene Coding for S-Adenosyl-L-Methionine Synthetase from Streptomyces natalensis

Streptomyces natalensis로부터 S-adenosyl-L-methionine synthetase 유전자의 클로닝 및 기능분석

  • Yoo, Dong-Min (Department of Food Science and Biotechnology, Kyungnam University) ;
  • Hwang, Yong-Il (Department of Food Science and Biotechnology, Kyungnam University) ;
  • Choi, Sun-Uk (Department of Food Science and Biotechnology, Kyungnam University)
  • 유동민 (경남대학교 식품생명학과) ;
  • 황용일 (경남대학교 식품생명학과) ;
  • 최선욱 (경남대학교 식품생명학과)
  • Received : 2010.11.04
  • Accepted : 2011.01.19
  • Published : 2011.01.30

Abstract

S-Adenosyl-L-methionine synthtase (SAM-s) catalyzes the biosynthesis of SAM from ATP and L-methionine. SAM plays important roles in the primary and secondary metabolism of cells. A metK encoding a SAM-s was searched from Streptomyces natalensis producing natamycin, a predominantly a strong antifungal agent, inhibiting the growth of both yeasts and molds and preventing the formation of aflatoxin in filamentous fungi. To obtain the metK of S. natalensis, PCR using primers designed from the two highly conserved regions for metK genes of Streptomyces strains was carried out, and an intact 1.2-kb metK gene of S. natalensis was cloned by genomic Southern hybridization with PCR product as a probe. To identify the function of the cloned metK gene, it was inserted into pSET152ET for its high expression in the Streptomyces strain, and then introduced into S. lividans TK24 as a host by transconjugation using E. coli ET12567(pUZ8002). The high expression of metK in S. lividans TK24 induced actinorhodin production on R5 solid medium, and its amount in R4 liquid medium was 10-fold higher than that by exconjugant including only pSET152ET.

ATP와 L-methionine으로부터 SAM synthetase (MetK)에 의해 생합성 되는 S-adenosylmethionine (SAM)은 세포내 메틸화에 필요한 메틸기를 제공하는 중심적인 공급체의 역할을 할뿐만 아니라 방선균에서는 일차 및 이차대사산물의 생산 조절에 관여하고 있다는 사실이 밝혀졌다. 이에 논 연구에서는 산업적으로 매우 중요한 항진균성 항생물질인 natamycin을 생산하는 S. natalensis로부터 SAM synthetase 코드하는 metK 유전자를 클로닝하고 동정하였다. S. natalensis에서 클로닝된 metK는 1,209 bp의 염기를 가진 유전자로써 아미노산서열에서 S. pristinaespiralis ATCC 25486과 S. peucetius ATCC 27952의 MetK와 96%, S. violaceusniger Tu 4113과 95% 일치하는 매우 높은 상동성을 보였다. 또 pSET152ET 벡터를 이용해 구축한 metK 고발현용 재조합 플라스미드 pCD1를 S. lividans TK24의 genomic DNA에 도입하여 actinorhodin 생산 유도를 시도해 본 결과 R5 고체배지에서 pCD1이 도입되지 않은 균주에서는 actinorhodin 생산을 전혀 확인할 수 없었지만 pCD1이 도입된 형질전환체에서는 actinorhodin 생산이 강하게 유도되었으며 R4 액체배지에서는 actinorhodin 생산량이 10배 증가되었다. 따라서 본 연구를 통해 클로닝된 S. natalensis 유래 metK 유전자는 방선균에서 이차대사산물의 생산을 유도할 수 있음을 확인할 수 있었다.

Keywords

References

  1. Aparicio, J. F., A. J. Colina, E. Ceballos, and J. F. Martin. 1999. The biosynthetic gene cluster for the 26-membered ring polyene macrolide pimaricin. A new polyketide synthase organization encoded by two subclusters separated by functionalization genes. J. Biol. Chem. 274, 10133-10139. https://doi.org/10.1074/jbc.274.15.10133
  2. Bierman, M., R. Logan, K. O'Brien, E. T. Seno, R. N. Rao, and B. E. Schoner. 1992. Plasmid cloning vectors for the conjugal transfer of DNA from Escherichia coli to Streptomyces spp. Gene 116, 43-49. https://doi.org/10.1016/0378-1119(92)90627-2
  3. Bolard, J. 1986. How do the polyene macrolide antibiotics affect the cellular membrane properties? Biochim. Biophys. Acta. 864, 257-304. https://doi.org/10.1016/0304-4157(86)90002-X
  4. Chiang, P. K., R. K. Gordon, J. Tal, G. C. Zeng, B. P .Doctor, K. Pardhasaradhi, and P. P. McCann. 1996. S-Adenosylmethionine and methylation. FASEB J. 10, 471-480.
  5. Fontecave, M., M. Atta, and E. Mulliez. 2004. S-adenosylmethionine: nothing goes to waste. Trends Biochem. Sci. 29, 243-249. https://doi.org/10.1016/j.tibs.2004.03.007
  6. Hesketh, A., J. Sun, and M. Bibb. 2001. Induction of ppGpp synthesis in Streptomyces coelicolor A3(2) grown under conditions of nutritional sufficiency elicits actII-ORF4 transcription and actinorhodin biosynthesis. Mol. Microbiol. 39, 136-144. https://doi.org/10.1046/j.1365-2958.2001.02221.x
  7. Huh, J. H., D. J. Kim, X. Q. Zhao, M. Li, Y. Y. Jo, T. M. Yoon, S. K. Shin, J. H. Yong, Y. W. Ryu, Y. Y. Yang, and J. W. Suh. 2004. Widespread activation of antibiotic biosynthesis by S-adenosylmethionine in streptomycetes. FEMS Microbiol. Lett. 238, 439-447. https://doi.org/10.1111/j.1574-6968.2004.tb09787.x
  8. Kawachi, R., U. Wangchaisoonthorn, T. Nihira, and Y. Yamada. 2000. Identification by gene deletion analysis of a regulator, VmsR, that controls virginiamycin biosynthesis in Streptomyces virginiae. J. Bacteriol. 182, 6259-6263. https://doi.org/10.1128/JB.182.21.6259-6263.2000
  9. Kieser, T., M. J. Bibb, M. J. Buttner, K. F. Chater, and D. A. Hopwood. 2000. Practical Streptomyces Genetics. The John Innes Foundation, Norwich, UK.
  10. Martin, J. F. 1977. Biosynthesis of polyene macrolide antibiotics. Annu. Rev. Microbiol. 31, 13-38. https://doi.org/10.1146/annurev.mi.31.100177.000305
  11. Ohnishi, Y., S. Kameyama, H. Onaka, and S. Horinouchi. 1999. The A-factor regulatory cascade leading to streptomycin biosynthesis in Streptomyces griseus : identification of a target gene of the A-factor receptor. Mol. Microbiol. 34, 102-111. https://doi.org/10.1046/j.1365-2958.1999.01579.x
  12. Oh, T. J., N. P. Niraula, K. Liou, and J. K. Sohng. 2010. Identification of the duplicated genes for S-adenosyl- l-methionine synthetase (metK1-sp and metK2-sp) in Streptomyces peucetius var. caesius ATCC 27952. J. Appl. Microbiol. 109, 398-407.
  13. Okamoto, S., A. Lezhava, T. Hosaka, Y. Okamoto-Hosoya, and K. Ochi. 2003. Enhanced expression of S-adenosylmethionine synthetase causes overproduction of actinorhodin in Streptomyces coelicolor A3(2). J. Bacteriol. 185, 601-609. https://doi.org/10.1128/JB.185.2.601-609.2003
  14. Park, H. S., S. K. Shin, Y. Y. Yang, H. J. Kwon, and J. W. Suh. 2005. Accumulation of S-adenosylmethionine induced oligopeptide transporters including BldK to regulate differentiation events in Streptomyces coelicolor M145. FEMS Microbiol. Lett. 249, 199-206. https://doi.org/10.1016/j.femsle.2005.05.047
  15. Rao, R. N., M. A. Richardson, and S. Kuhstoss. 1987. Cosmid shuttle vectors for cloning and analysis of Streptomyces DNA. Methods Enzymol. 153, 166-198. https://doi.org/10.1016/0076-6879(87)53053-1
  16. Sambrook, J. and D. W. Russell. 2001. Molecular Cloning: A Laboratory Manual, 3rd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, New York.
  17. Shima, J., A. Hesketh, S. Okamoto, S. Kawamoto, and K. Ochi. 1996. Induction of actinorhodin production by rpsL (encoding ribosomal protein S12) mutations that confer streptomycin resistance in Streptomyces lividans and Streptomyces coelicolor A3(2). J. Bacteriol. 178, 7276-7284.
  18. Shin, S. K., H. S. Park, H. J. Kwon, H. J. Yoon, and J. W. Suh. 2007. Genetic characterization of two S-adenosylmethionine- induced ABC transporters reveals their roles in modulations of secondary metabolism and sporulation in Streptomyces coelicolor M145. J. Microbiol. Biotechnol. 17, 1818-1825.
  19. Wang, J. X. and R. R. Breaker. 2008. Riboswitches that sense S-adenosylmethionine and S-adenosylhomocysteine. Biochem. Cell Biol. 86, 157-168. https://doi.org/10.1139/O08-008
  20. Xu, D., H. J. Kwon, and J. W. Suh. 2008. S-Adenosylmethionine induces BldH and activates secondary metabolism by involving the TTA-codon control of bldH expression in Streptomyces lividans. Arch. Microbiol. 189, 419-426. https://doi.org/10.1007/s00203-007-0336-4