DOI QR코드

DOI QR Code

유용식용 균주에 의한 발효 누에분말의 이화학적 특성과 생리활성

Biological Activity and Biochemical Properties of Silkworm (Bombyx mori L.) Powder Fermented with Bacillus subtilis and Aspergillus kawachii

  • 차재영 (대선주조(주) 기술연구소) ;
  • 김용순 (국립농업과학원 농업생물부) ;
  • 안희영 (동아대학교 대학원 의생명과학과) ;
  • 강민정 (동아대학교 대학원 의생명과학과) ;
  • 허수진 (동아대학교 대학원 의생명과학과) ;
  • 조영수 (동아대학교 생명공학과)
  • Cha, Jae-Young (Technical Research Institute, Daesun Distilling Co., Ltd.) ;
  • Kim, Yong-Soon (Department of Agricultural Biology, National Academy of Agricultural Science, RDA) ;
  • Ahn, Hee-Young (Department of Medical Biosciences, Graduate School, Dong-A University) ;
  • Kang, Min-Jung (Department of Medical Biosciences, Graduate School, Dong-A University) ;
  • Heo, Su-Jin (Department of Medical Biosciences, Graduate School, Dong-A University) ;
  • Cho, Young-Su (Department of Biotechnology, Dong-A University)
  • 투고 : 2010.10.06
  • 심사 : 2010.12.13
  • 발행 : 2011.01.30

초록

누에 분말을 이용하여 B. subtilis 및 A. kawachii 균주에 의한 고체 발효를 통해 얻어진 발효 누에분말의 발효시간에 따른 이화학적 특성(단백질 함량 및 단백질 분해 패턴) 및 생리활성 효과(항산화 작용, 환원력 및 혈전용해 활성)를 평가하였다. 누에 단백질 함량과 항산화 활성은 B. subtilis 및 A. kawachii 두 균주 발효 모두 12일째에 가장 높았으며, 발효시간 증가와 함께 증가하는 경향을 보였다. 발효 누에분말의 환원력은 B. subtilis 균주 발효에 의해서는 6일째에 A. kawachii 균주 발효에 의해서는 12일째 가장 높은 것으로 나타나 균주간에 차이가 있었다. 혈전 분해 활성은 B. subtilis 및 A. kawachii 두 균주 발효 모두 6일째에 가장 높았으며, 이러한 효과는 B. subtilis 발효 누에분말보다는 A. kawachii 발효 누에분말에서 더 높았다. SDS-PAGE상의 단백질 패턴 분석에서는 66-97 kDa 크기의 단백질 밴드가 B. subtilis 발효에 의해서는 발효 초기인 3일째 대부분 분해가 일어났으나, A. kawachii 발효 누에분말에서는 발효 3일째부터 차츰 분해되기 시작하여 12일째 분해가 대부분 이루어졌다. 따라서 미생물을 이용한 발효 누에에서 특정의 생리활성 작용을 기대하기 위해서는 사용하는 균종에 따라 발효 기간이 달라져야 한다는 것을 시사하였다.

Biological activities (${\alpha},{\alpha}'$-diphenyl-${\beta}$-picrylhydrazyl (DPPH) free radical scavenging activity, fibrinolytic activity and reducing power) and biochemical properties (protein content and electrophoretical protein patterns) were examined in solid state fermentation with Bacillus subtilis and Aspergillus kawachii using silkworm powder (SP) as substrate. The highest protein contents and free radical scavenging activities were seen in the SP fermented for 12 days with B. subtilis and A. kawachii, and these were in a time-dependent manner. The highest reducing power was seen in the SP fermented for 6 days with B. subtilis and for 12 days with A. kawachii, respectively. The highest fibrinolytic activities were seen in silkworm fermented for 6 days with B. subtilis and A. kawachii, but this activity was higher in the A. kawachii fermented SP than that of B. subtilis. When total protein patterns were analyzed by SDS-polyacrylamide gel electrophoresis (PAGE), the proteins of the SP fermented with B. subtilis for 3 days were completely degraded, while the protein degradation in the SP fermented with A. kawachii occurred after 12 days and this degradation increased proportionally to culture time. As a result, the SP fermented with both B. subtilis and A. kawachii showed higher fibrinolytic activities after 6 days of fermentation and antioxidative activity after 12 days, indicating that physiological activities of the fermented SP using these strains were highly improved compared to the unfermented SP, and that this compound could be a candidate material as a dietary supplement of healthy functional foods.

키워드

참고문헌

  1. Astrup, T. and S. Mullertz. 1991. The fibrin plate method for estimating fibrinolytic activity. Arch. Biochem. Biophys. 40, 346-351. https://doi.org/10.1016/0003-9861(52)90121-5
  2. Blois, M. S. 1958. Antioxidant determination by the use of a stable free radical. Nature 26, 1199-1204. https://doi.org/10.1038/1811199a0
  3. Cha, J. Y., Y. S. Kim, H. Y. Ahn, K. E. Eom, B. K. Park, and Y. S. Cho. 2009. Biological activity of fermented silkworm powder. J. Life Sci. 19, 1468-1477. https://doi.org/10.5352/JLS.2009.19.10.1468
  4. Cha, J. Y., Y. S. Kim, P. D. Kang, H. Y. Ahn, K. E. Eom, and Y. S. Cho. 2010. Biological activity and chemical characteristics of fermented silkworm powder by mold. J. Life Sci. 20, 237-244. https://doi.org/10.5352/JLS.2010.20.2.237
  5. Cho, C. H., W. S. Cha, and J. S. Kim. 1989. Effect of temperature, time and pH on the extraction of protein in a chrysalis of silkworm. Korean J. Biotechnol. Bioeng. 4, 65-68.
  6. Cho, Y. S., Y. S. Park, J. Y. Lee, K. D. Kang, K. Y. Hwang, and S. I. Seong. 2008. Hypoglycemic effect of culture broth of Bacillus subtilis S10 producing 1-Deoxynojirimycin. J. Korean Soc. Food Sci. Nutr. 37, 1401-1407. https://doi.org/10.3746/jkfn.2008.37.11.1401
  7. Davis, B. J. 1964. Disc electrophoresis-II. Method and application to human serum proteins. pp. 121-404, In Fredrich, J. E. (ed.), Gel electrophoresis. Ann. New York Acad. Sci.
  8. Duncan, D. B. 1959. Multiple range and multiple F test. Biometrics 1, 1-42. https://doi.org/10.1002/bimj.19590010102
  9. In, J. P., S. K. Lee, B. K. Ahn, I. M. Chung, and C. H. Jang. 2002. Flavor improvement of cheongkukjang by addition of Yucca (Yucca shidigera) extract. Korean J. Food Sci. Technol. 34, 57-64.
  10. Jayaprakasha, G. K., R. P. Singh, and K. K. Sakariah. 2001. Antioxidant activity of grape seed (Vitis vinifera) extracts on peroxidation models in vitro. Food Chem. 73, 285-290. https://doi.org/10.1016/S0308-8146(00)00298-3
  11. Kang, G. D., K. H. Lee, S. G. Do, C. S. Kim, J. G. Suh, Y. S. Oh, and J. H. Nham. 2001. Effect of silk fibroin on the protection of alcoholic hepatotoxicity in the liver of alcohol preference mouse. Int. J. Indust. Entomol. 2, 15-18.
  12. Kang, P. D., H. J. Yoon, K. S. Ryu, B. H. Sohn, and H. D. Sohn. 1999. Electrophoretic patterns of hemolymph proteins of varieties with long and short life span in the silkworm Bombyx mori L. Korean J. Seric. Sci. 41, 1-8.
  13. Kato, N., S. Sato, A. Yamanaka, H. Yamada, N. Fuwa, and M. Nomura. 1998. Silk protein, sericin, inhibits lipid peroxidation and tyrosinase activity. Biosci. Biotechnol. Biochem. 62, 145-147. https://doi.org/10.1271/bbb.62.145
  14. Kim, J. E. and S. B. Lee. 2009. Production of bioactive components and anti-oxidative activity of soybean grit fermented with Bacillus subtilis HA according to fermentation time. Korean J. Food Sci. Technol. 41, 179-185.
  15. Kim, Y. S., K. Y. Kim, P. D. Kang, J. Y. Cha, J. S. Heo, and Y. S. Cho. 2008. Effect of silkworm (Bombyx mori) excrement powder on the alcoholic hepatotoxicity in rats. J. Life Sci. 18, 1342-1347. https://doi.org/10.5352/JLS.2008.18.10.1342
  16. Kwon, H. J., K. H. Lee, J. H. Kim, S. S. Chun, Y. J. Cho, and W. S. Cha. 2006. Effect of protease on the extraction and properties of the protein from silkworm pupa. J. Korean Soc. Appl. Biol. Chem. 49, 304-308.
  17. Lee, J. H., N. K. Kim, D. Y. Lee, and C. H. Lee. 1999. Protective effect of selected amino acids and food extracts on ethanol toxicity determent in rat liver. Korean J. Food Sci. Technol. 31, 802-808.
  18. Lowry, O. H., N. J. Rosebrogh, A. L. Farr, and R. J. Randall. 1951. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265-271. https://doi.org/10.1234/12345678
  19. Marcuse, R. 1962. The effect of some amino acids on the oxidation of linoleic acid and its methyl ester. J. Am. Oil Chem. 39, 97-103. https://doi.org/10.1007/BF02631680
  20. Matsuo, M. 1997. In vitro antioxidant activity of Okara koji, a fermented Okara, by Aspergillus oryzae. Biothechol. Biochem. Bioch. 61, 1968-1972.
  21. Matsuo, M. N. Nakamura, Y. Shidoji, and T. Osawa. 1997. Antioxidative mechanism and apoptosis induction by 3-hydroxy anthranilic acid, an antioxidant in Indonesian food, tempeh, in the hyamn hepatoma derived cell line, HuH-7. J. Nutr. Sci. Vitaminol. 43, 249-259. https://doi.org/10.3177/jnsv.43.249
  22. Nieva, M. M., A. R. Sampietro, and M. A. Vattuone. 2000. Comparison of the free radical scavenging activity of propolis from several regions of Argentina. J. Ethopharmacol. 71, 109-114. https://doi.org/10.1016/S0378-8741(99)00189-0
  23. Ok, M. and Y. S. Cho. 2005. Screening of fibrinolytic enzyme producing from microorganism in Korean fermented soybean paste and optimum conditions of enzyme production. Korean J. Food Preserv. 12, 643-649.
  24. Park, S. J., S. W. Song, D. H. Seong, D. S. Park, S. S. Kim, J. Gou, J. H. Ahn, W. B. Yoon, and H. Y. Lee. 2009. Biological activities in the extract if fermented Codonopsis lanceolata. J. Korean Soc. Food Sci. Nutr. 38, 983-988. https://doi.org/10.3746/jkfn.2009.38.8.983
  25. Park, Y. J., J. C. Heo, S. M. An, E. Y. Yun, S. M. Han, J. S. Hwang, S. W. Kang, C. Y. Yun, and S. H. Lee. 2005. High throughput-compatible screening of antioxidative substances by insect extract library. Korean J. Food Preserv. 12, 482-488.
  26. Ryu, H. Y., J. C. Heo, J. S. Hwang, S. W. Kang, C. Y. Yun, S. H. Lee, and H. Y. Sohn. 2008. Screening of thrombin inhibitor and its DPPH radical scavenging activity from wide insects. J. Life Sci. 18, 363-368. https://doi.org/10.5352/JLS.2008.18.3.363
  27. Shon, M. Y., J. Lee, J. H. Choi, and S. K. Park. 2007. Antioxidant and free radical scavenging activity of methanol extract of cheongkukjang. J. Food Compos. Anal. 20, 113-118. https://doi.org/10.1016/j.jfca.2006.08.003
  28. Sumi, H., H. Hamada, H. Tsushima, H. Mihara, and H. Muraki. 1978. A novel fibrinolytic enzyme (Nattokinase) in the vegetable che in Natto: a typical and popular soybean food in the Japanese diet. Experimentia 43, 1110-1111.
  29. Weber, K. and M. Osborn. 1969. The reliability of molecular weight determination by sodium dodesyl sulphate-polyacrylamide gel electrophoresis. J. Biol. Chem. 244, 4406-4412.
  30. Yin, M., K. Ikejima, G. E. Arteel, V. Seabra, B. U. Bradford, H. Kono, and I. Rusyn, and R. G. Thurman. 1998. Glycine accelerates recovery from alcohol-induced liver injury. J. Pharacol. Exp. Ther. 286, 1014-1019.
  31. Zhu, Q. V., R. M. Hackman, X. X. Jodilensunsa, R. R. Holt, and C. L. Keen. 2002. Antioxidative activities of Oolong tea. J. Agric. Food Chem. 50, 6229-6934. https://doi.org/10.1021/jf0206163

피인용 문헌

  1. Branched-chain amino acids complex inhibits melanogenesis in B16F0 melanoma cells vol.34, pp.2, 2012, https://doi.org/10.3109/08923973.2011.600764
  2. Biological Activity and Chemical Characteristics of Cordyceps militaris Powder Fermented by Several Microscopic Organisms vol.25, pp.2, 2015, https://doi.org/10.5352/JLS.2015.25.2.197