DOI QR코드

DOI QR Code

Extract of Rubus coreanus Fruits Increases Expression and Activity of Endothelial Nitric Oxide Synthase in the Human Umbilical Vein Endothelial Cells

복분자 추출물에 의한 내피세포 NO 합성효소의 활성과 발현 증가

  • Yoon, Hyun-Joong (Department of Biochemistry, Medical School and Research Institute of Medical Science, Chonnam National University) ;
  • Park, Soo-Young (Department of Obstetrics and Gynecology, Medical School and Research Institute of Medical Science, Chonnam National University) ;
  • Oh, Sung-Tack (Department of Obstetrics and Gynecology, Medical School and Research Institute of Medical Science, Chonnam National University) ;
  • Lee, Kee-Young (Department of Biochemistry, Medical School and Research Institute of Medical Science, Chonnam National University) ;
  • Yang, Sung-Yeul (Department of Biochemistry, Medical School and Research Institute of Medical Science, Chonnam National University)
  • 윤현중 (전남대학교 의과대학 생화학교실, 의과학연구소) ;
  • 박수영 (전남대학교 의과대학 산부인과학교실, 의과학연구소) ;
  • 오성택 (전남대학교 의과대학 산부인과학교실, 의과학연구소) ;
  • 이기영 (전남대학교 의과대학 생화학교실, 의과학연구소) ;
  • 양성렬 (전남대학교 의과대학 생화학교실, 의과학연구소)
  • Received : 2010.11.17
  • Accepted : 2010.01.04
  • Published : 2011.01.30

Abstract

This study aimed to investigate the effects of water extract of Rubus coreanus (RCE) on the expression and activity of endothelial nitric oxide synthase (eNOS), as well as its signal transduction pathways in human umbilical vein endothelial cells (HUVECs). The specific inhibitors of NOS show RCE treatment increases NO production in HUVECs due to the up-regulation of eNOS rather than iNOS. The real-time expression level of eNOS mRNA was also increased upon RCE treatment in HUVECs. While a PKC-specific inhibitor, RO-317549, did not alter RCE-induced NO production in HUVECs, tamoxifen (estrogen receptor-specific inhibitor), PD98059 (ERK-specific inhibitor) and LY-294002 (PI3K/Akt-specific inhibitor) did have suppressive effects. Increased NO production by RCE seems to result from a higher level of active eNOS (pSer1177). Specifically, inhibition of ERK not only decreased the level of active eNOS, but also increased the inactive form of the enzyme (pThr495) in HUVECs. This study suggests that RCE treatment increases NO production in HUVECs due to the increased expression and activity of eNOS. It is also shown that RCE-induced eNOS activation occurs partly through the binding of RCE to the estrogen receptor, along with ERK and PI3K/Akt-dependent signal transduction pathways. In addition, the regulatory binding proteins of eNOS including Hsp90 and caveolin-1 were related to these effects of RCE on eNOS activity in HUVECs.

본 연구는 복분자의 수용성 추출물(RCE) 이 배양된 제대정맥내피세포에서 내피세포 NO 합성 효소(eNOS)의 발현과 활성에 미치는 효과를 연구하고, 이러한 RCE의 효과가 어떤 신호전달 과정을 거치는지를 밝히기 위한 것이다. 연구에 따르면 RCE가 제대정맥내피세포에서 NO의 생성을 증가시키는데 이는 iNOS 보다는 eNOS의 활성화에 의한 것임을 이들의 특이 억제제를 사용한 실험으로 확인할 수 있었다. 나아가 eNOS에 의한 NO 생성 증가는 이 효소의 활성 증가뿐만 아니라 mRNA 수준에서의 발현증가에도 기인함을 확인할 수 있었다. PKC-특이억제제인 RO-317549는 RCE에 의한 NO 생성의 증가에 별다른 영향을 주지 않았으나, 에스트로젠 수용체-특이 억제제인 Tamoxifen, ERK-특이 억제제인 PD98059와 PI3K/Akt-특이 억제제인 LY-294002는 제대정맥내피세포에서 RCE에 의해 증가된 NO 생성을 억제하였으며, 이는 두 저해제가 eNOS의 활성형인 pSer1177의 양을 감소시키며, 특히 PD98059는 비활성형인 pThr495의 양도 증가시키기 때문임을 알 수 있었다. 이상의 결과로써, 복분자 수추출물은 사람의 제대정맥내피세포에서 NO 생성을 증가시키며, 이는 eNOS의 발현을 증가시킬 뿐만 아니라, ERK와 PI3K/Akt의 신호전달과정을 거쳐서 eNOS의 활성도 증가시키기 때문임을 확인할 수 있었다.

Keywords

References

  1. Adlercreutz, H. 2002. Phyto-oestrogens and cancer. Lancet Oncol. 3, 364-373. https://doi.org/10.1016/S1470-2045(02)00777-5
  2. Bredt, D. S. and S. H. Snyder. 1990. Isolation of nitric oxide synthase, a calmodulin-requiring enzyme. Proc. Natl. Acad. Sci. U.S.A. 87, 682-685. https://doi.org/10.1073/pnas.87.2.682
  3. Briones, A. M., M. Salaices, and E. Vila. 2005. Ageing alters the production of nitric oxide and prostanoids after $IL-1{\beta}$ exposure in mesenteric resistance arteries. Mech. Ageing Dev. 126, 710-721. https://doi.org/10.1016/j.mad.2005.01.006
  4. Brouet, A., P. Sonveaux, C. Dessy, J. L. Balligand, and O. Feron. 2001. Hsp90 ensures the transition from the early $Ca^{2+}-dependent$ to the late phosphorylation-dependent activation of the endothelial nitric-oxide synthase in vascular endothelial growth factor-exposed endothelial cells. J. Biol. Chem. 276, 32663-32669. https://doi.org/10.1074/jbc.M101371200
  5. Brzezinski, A. and A. Debi. 1999. Phytoestrogens: the ‘natural’ selective estrogen receptor modulators? Eur. J. Obstet. Gynecol. Reprod. Biol. 85, 47-51. https://doi.org/10.1016/S0301-2115(98)00281-4
  6. Cao, S., J. Yao, and V. Shah. 2003. The proline-rich domain of dynamin-2 is responsible for dynamin-dependent in vitro potentiation of endothelial nitric-oxide synthase activity via selective effects on reductase domain function. J. Biol. Chem. 278, 5894-5901. https://doi.org/10.1074/jbc.M212546200
  7. Caulin-Glaser, T., G. Garcia-Cardena, P. Sarrel, W. C. Sessa, and J. R. Bender. 1997. $17{\beta}-Estradiol $regulation of human endothelial cell basal nitric oxide release, independent of cytosolic $Ca^{2+}$ mobilization. Circ. Res. 81, 885-892. https://doi.org/10.1161/01.RES.81.5.885
  8. Chambliss, K. L. and P. W. Shaul. 2002. Estrogen modulation of endothelial nitric oxide synthase. Endocrine Rev. 23, 665-686. https://doi.org/10.1210/er.2001-0045
  9. Choi, J., K. T. Lee, J. Ha, S. Y. Yun, C. D. Ko, H. J. Jung, and H. J. Park. 2003. Antinociceptive and antiinflammatory effects of Niga-ichigoside F1 and 23-hydroxytormentic acid obtained from Rubus coreanus. Biol. Pharm. Bull. 26, 1436-1441. https://doi.org/10.1248/bpb.26.1436
  10. Chowienczyk, P. 2002. Vascular aging. Clin. Sci. 102, 601-602. https://doi.org/10.1042/CS20020040
  11. Dimmeler, S., I. Fleming, B. Fisslthaler, C. Hermann, R. Busse, and A. M. Zeiher. 1999. Activation of nitric oxide synthase in endothelial cells by Akt-dependent phosphorylation. Nature 399, 601-605. https://doi.org/10.1038/21224
  12. Dimmeler, S., J. Haendeler, and A. M. Zeiher, 2002. Regulation of endothelial cell apoptosis in atherothrombosis. Curr. Opin. Lipidol. 13, 531-536. https://doi.org/10.1097/00041433-200210000-00009
  13. Duffy, S. J., J. F. Jr. Keaney, M. Holbrook, N. Gokce, P. L. Swerdloff, B. Frei, and J. A. Vita. 2001. Short- and long-term black tea consumption reverses endothelial dysfunction in patients with coronary artery disease. Circulation 104, 151-156. https://doi.org/10.1161/01.CIR.104.2.151
  14. Figtree, G. A., D. McDonald, H. Watkins, and K. M. Channon. 2003. Truncated estrogen receptor alpha 46-kDa isoform in human endothelial cells: relationship to acute activation of nitric oxide synthase. Circulation 107, 120-126. https://doi.org/10.1161/01.CIR.0000043805.11780.F5
  15. Fleming, I., B. Fissltahler, S. Dimmeler, B. E. Kemp, and R. Busse. 2001. Phosphorylation of Thr(495) regulates $Ca(^{2+})/calmodulin-dependent$ endothelial nitric oxide synthase activity. Circ. Res. 88, E68-75. https://doi.org/10.1161/hh1101.092677
  16. Fulton, D., R. Babbitt, S. Zoellner, J. Fontana, L. Acevedo, T. J. McCabe, Y. Iwakiri, and W. C. Sessa. 2004. Targeting of endothelial nitric-oxide synthase to the cytoplasmic face of the Golgi complex or plasma membrane regulates Aktversus calcium-dependent mechanisms for nitric oxide release. J. Biol. Chem. 279, 30349-30357. https://doi.org/10.1074/jbc.M402155200
  17. Fulton, D., J. P. Gratton, T. J. McCabe, J. Fontana, Y. Fujio, K. Walsh, T. F. Franke, A. Papapetropoulos, and W. C. Sessa. 1999. Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature 399, 597-601. https://doi.org/10.1038/21218
  18. Garcia-Cardena, G., R. Fan, V. Shah, R. Sorrentino, G. Cirino, A. Papapetropoulos, and W. C. Sessa. 1998. Dynamic activation of endothelial nitric oxide synthase by Hsp90. Nature 392, 821-824. https://doi.org/10.1038/33934
  19. Gruber, C. J., W. Tschugguel, C. Schneeberger, and J. C. Huber. 2002. Production and actions of estrogens. N. Engl. J. Med. 346, 340-352. https://doi.org/10.1056/NEJMra000471
  20. Haynes, M. P., D. Sinha, K. S. Russell, M. Collinge, D. Fulton, M. Morales-Ruiz, W. C. Sessa, and J. R. Bender. 2000. Membrane estrogen receptor engagement activates endothelial nitric oxide synthase via the PI3-kinase-Akt pathway in human endothelial cells. Circ. Res. 87, 677-682. https://doi.org/10.1161/01.RES.87.8.677
  21. Hisamoto, K., M. Ohmichi, H. Kurachi, J. Hayakawa, Y. Kanda, Y. Nishio, K. Adachi, K. Tasaka, E. Miyoshi, N. Fujiwara, N. Taniguchi, and Y. Murata. 2001. Estrogen induces the Akt-dependent activation of endothelial nitric-oxide synthase in vascular endothelial cells. J. Biol. Chem. 276, 3459-3467. https://doi.org/10.1074/jbc.M005036200
  22. Hishikawa, K., T. Nakaki, T. Marumo, H. Suzuki, R. Kato, and T. Saruta. 1995. Up-regulation of nitric oxide synthase by estradiol in human aortic endothelial cell. FEBS Lett. 360, 291-293. https://doi.org/10.1016/0014-5793(95)00124-R
  23. Hoffmann, J., J. Haendeler, A. Aicher, L. Rossog, M. Vasa, A. M. Zeiher, and A. Dimmeler. 2001. Aging enhances the sensitivity of endothelial cells toward apoptotic stimuli: Important role of nitric oxide. Circ. Rec. 89, 709-715. https://doi.org/10.1161/hh2001.097796
  24. Ignarro, L. J., G. Cirino, A. Casini, and C. Napoli. 1999. Nitric oxide as signaling molecule in the vascular system: an overview. J. Cardiovasc. Pharmacol. 34, 879-886. https://doi.org/10.1097/00005344-199912000-00016
  25. Jagnandan, D., W. C. Sessa, and D. Fulton. 2005. Intracellular location regulates calcium-calmodulin-dependent activation of organelle-restricted eNOS. Am. J. Physiol. Cell Physiol. 289, 1024-1033. https://doi.org/10.1152/ajpcell.00162.2005
  26. John, T. A., B. O. Ibe, and J. U. Raj. 2006. Oxygen alters caveolin-1 and nitric oxide synthase-3 functions in ovine fetal and neonatal lung microvascular endothelial cells. Am J. Physiol. Lung Cell Mol. Physiol. 291, 1079-1093. https://doi.org/10.1152/ajplung.00526.2005
  27. Ju, H., R. Zou, V. J. Venema, and R. C. Venema. 1997. Direct interaction of endothelial nitric oxide synthase and caveolin- 1 inhibits synthase activity. J. Biol. Chem. 272, 18522-18525. https://doi.org/10.1074/jbc.272.30.18522
  28. Katzenellenbogen, B. S. 1996. Estrogen receptors: bioactivities and interactions with cell signaling pathways. Biol. Reprod. 54, 287-293. https://doi.org/10.1095/biolreprod54.2.287
  29. Kelly, M. J. and E. R. Levin. 2001. Rapid actions of plasma membrane estrogen receptors. Trends Endocrinol. Metab. 12, 152-156. https://doi.org/10.1016/S1043-2760(01)00377-0
  30. Kim, E. J., Y. J. Lee, H. K. Shin, and J. H. Park. 2005. Induction of apoptosis by the aqueous extract of Rubus coreanum in HT-29 human colon cancer cells. Nutrition 21, 1141-1148. https://doi.org/10.1016/j.nut.2005.02.012
  31. Klinge, C. M., K. A. Blankenship, K. E. Risinger, S. Bhatnagar, E. L. Noisin, W. K. Sumanasekera, L. Zhao, D. M. Brey, and R. S. Keynton. 2005. Resveratrol and estradiol rapidly activate MAPK signaling through estrogen receptors alpha and beta in endothelial cells. J. Biol. Chem. 280, 7460-7468. https://doi.org/10.1074/jbc.M411565200
  32. Kronenberg, F. and A. Fugh-Berman. 2002. Complementary and alternative medicine for menopausal symptoms: a review of randomized, controlled trials. Ann. Intern. Med. 137, 805-813. https://doi.org/10.7326/0003-4819-137-10-200211190-00009
  33. Ku, C. H. and S. P. Mun. 2008. Antioxidant activities of ethanol extracts from seeds in fresh Bokbunja (Rubus coreanus Miq.) and wine processing waste. Bioresour. Technol. 99, 4503-4509. https://doi.org/10.1016/j.biortech.2007.08.063
  34. Kuiper, G. G., J. G. Lemmen, B. Carlsson, J. C. Corton, S. H. Safe, T. van der Saag, B. van der Burg, and J. A. Gustafsson. 1998. Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor beta. Endocrinology 139, 4252-4263. https://doi.org/10.1210/en.139.10.4252
  35. Liu, J., P. Oh, T. Horner, R. A. Rogers, and J. E. Schnitzer. 1997. Organized endothelial cell surface signal transduction in caveolae distinct from glycosylphosphatidylinositol-anchored protein microdomains. J. Biol. Chem. 272, 7211-7222. https://doi.org/10.1074/jbc.272.11.7211
  36. Mahn, K., C. Borras, G. A. Knock, P. Taylor, I. Y. Khan, D. Sugden, L. Poston, J. P. Ward, R. M. Sharpe, J. Vina, P. I. Aaronson, and G. E. Mann. 2005. Dietary soy isoflavone induced increases in antioxidant and eNOS gene expression lead to improved endothelial function and reduced blood pressure in vivo. FASEB J. 19, 1755-1757.
  37. Marin, J. 1995. Age-related changes in vascular responses. Mech. Ageing Dev. 79, 71-114. https://doi.org/10.1016/0047-6374(94)01551-V
  38. Mense, S. M., T. K. Hei, R. K. Ganju, and H. K. Bhat. 2008. Phytoestrogens and breast cancer prevention: possible mechanisms of action. Environ. Health Perspect. 116, 426-433. https://doi.org/10.1289/ehp.116-a426
  39. Michel, J. B., O. Feron, D. Sacks, and T. Michel. 1997. Reciprocal regulation of endothelial nitric-oxide synthase by $Ca^{2+}-calmodulin$ and caveolin. J. Biol. Chem. 272, 15583-15586. https://doi.org/10.1074/jbc.272.25.15583
  40. Michell, B. J., M. B. Harris, Z. P. Chen, H. Ju, V. J. Venema, M. A. Blackstone, W. Huang, R. C. Venema, and B. E. Kemp. 2002. Identification of regulatory sites of phosphorylation of the bovine endothelial nitric-oxide synthase at serine 617 and serine 635. J. Biol. Chem. 277, 42344-42351. https://doi.org/10.1074/jbc.M205144200
  41. Minshall, R. D., W. C. Sessa, R. V. Stan, R. G. Anderson, and A. B. Malik. 2003. Caveolin regulation of endothelial function. Am. J. Physiol. Lung Cell Mol. Physiol. 285, L1179-L1183.
  42. Moncada, S., R. M. Palmer, and E. A. Higgs. 1990. Nitric oxide: physiology, pathophysiology, and pharmacology. Pharmacol. Rev. 43, 109-142.
  43. Moon, Y. J., X. Wang, and M. E. Morris. 2006. Dietary flavonoids: effects on xenobiotic and carcinogen metabolism. Toxicol. In Vitro 20, 187-210. https://doi.org/10.1016/j.tiv.2005.06.048
  44. Moutsatsou, P. 2007. The spectrum of phytoestrogens in nature: our knowledge is expanding. Hormones 6, 173-193.
  45. Nakaya, M., H. Tachibana, and K. Yamada. 2005. Isoflavone genistein and daidzein up-regulate LPS-induced inducible nitric oxide synthase activity through estrogen receptor pathway in RAW264.7 cells. Biochem. Pharm. 71, 108-114. https://doi.org/10.1016/j.bcp.2005.10.002
  46. Oh, M. S., W. M. Yang, M. S. Chang, W. Park, D. R. Kim, H. K. Lee, W. N. Kim, and S. K. Park. 2007. Effects of Rubus coreanus on sperm parameters and cAMP-responsive element modulator (CREM) expression in rat testes. J. Ethnopharm. 114, 463-467. https://doi.org/10.1016/j.jep.2007.08.025
  47. Oka, N., M. Yamamoto, C. Schwencke, J. Kawabe, T. Ebina, S. Ohno, J. Couet, M. P. Lisanti, and Y. Ishikawa. 1997. Caveolin interaction with protein kinase C. Isoenzyme-dependent regulation of kinase activity by the caveolin scaffolding domain peptide. J. Biol. Chem. 272, 33416-33421. https://doi.org/10.1074/jbc.272.52.33416
  48. Ososki, A. L. and E. J. Kennelly. 2003. Phytoestrogens: a review of the present state of research. Phytother. Res. 17, 845-869. https://doi.org/10.1002/ptr.1364
  49. Patel, A. V., J. Rojas-Vera, and C. G. Dacke1. 2004. Therapeutic Constituents and Actions of Rubus Species. Current Medicinal Chemistry 11, 1501-1512. https://doi.org/10.2174/0929867043365143
  50. Prabhakar, P., V. Cheng, and T. Michel. 2000. A chimeric transmembrane domain directs endothelial nitric-oxide synthase palmitoylation and targeting to plasmalemmal caveolae. J. Biol. Chem. 275, 19416-19421. https://doi.org/10.1074/jbc.M001952200
  51. Ruggiero, R. J. and F. E. Likis. 2002. Estrogen: physiology, pharmacology, and formulations for replacement therapy. J. Midwifery Womens Health 47, 130-138. https://doi.org/10.1016/S1526-9523(02)00233-7
  52. Russell, K. S., M. P. Haynes, T. Caulin-Glaser, J. Rosneck, W. C. Sessa, and J. R. Bender. 2000. Estrogen stimulates heat shock protein 90 binding to endothelial nitric oxide synthase in human vascular endothelial cells. J. Biol. Chem. 275, 5026-5030. https://doi.org/10.1074/jbc.275.7.5026
  53. Schmidt, H. H. and F. Murad. 1991. Purification and characterization of a human NO synthase. Biochem. Biophys. Res. Commun. 181, 1372-1377. https://doi.org/10.1016/0006-291X(91)92090-7
  54. Schmidt, H. H., R. Seifert, and E. Bohme. 1989. Formation and release of nitric oxide from human neutrophils and HL-60 cells induced by a chemotactic peptide, platelet activating factor and leukotriene $B_4$. FEBS Lett. 244, 357-360. https://doi.org/10.1016/0014-5793(89)80562-9
  55. Sessa, W. C. 2005. Regulation of endothelial derived nitric oxide in health and disease. Mem. Inst. Oswaldo Cruz. 100, 15-18.
  56. Setchell, K. D. R. 1998. Phytoestrogens: the biochemistry, physiology, and implications for human health of soy isoflavones. Am. J. Clin. Nutr. 68, 1333S-1146S.
  57. Shin, T. Y., S. H. Kim, E. S. Lee, D. O. Eom, and H. M. Kim. 2002. Action of Rubus coreanus extract on systemic and local anaphylaxis. Phytother. Res. 16, 508-513. https://doi.org/10.1002/ptr.925
  58. Simoncini, T., A. Hafezi-Moghadam, D. P. Brazil, K. Ley, W. W. Chin, and J. K. Liao. 2000. Interaction of oestrogen receptor with the regulatory subunit of phosphatidylinositol- 3-OH kinase. Nature 407, 538-541. https://doi.org/10.1038/35035131
  59. Singleton, V. L., R. Orthofer, and R. M. Lamuela-Raventos. 1999. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol. 299, 152-178. https://doi.org/10.1016/S0076-6879(99)99017-1
  60. Siow, R. C., F. Y. Li, D. J. Rowlands, P. Winter, and G. E. Mann. 2007. Cardiovascular targets for estrogens and phytoestrogens: transcriptional regulation of nitric oxide synthase and antioxidant defense genes. Free Radic. Biol. Med. 42, 909-925. https://doi.org/10.1016/j.freeradbiomed.2007.01.004
  61. Sirtori, C. R., A. Arnoldi, and S. K. Johnson. 2005. Phytoestrogens: end of a tale? Ann. Med. 37, 423-438. https://doi.org/10.1080/07853890510044586
  62. Smart, E. J., D. C. Foster, Y. S. Ying, B. A. Kamen, and R. G. W. Anderson. 1994. Protein kinase C activators inhibit receptor-mediated potocytosis by preventing internalization of caveolae. J. Cell Biol. 124, 307-313. https://doi.org/10.1083/jcb.124.3.307
  63. Smith, A. R., F. Visioli, and T. M. Hagen. 2006. Plasma membrane- associated endothelial nitric oxide synthase and activity in aging rat aortic vascular endothelia markedly decline with age. Arch. Biochem. Biophy. 454, 100-105. https://doi.org/10.1016/j.abb.2006.02.017
  64. Wade, C., F. Kronenberg, A. Kelly, and P. A. Murphy. 1999. Hormone modulating herbs: implications for women’s health. J. Am. Med. Womens Assoc. 54, 181-183.
  65. Wagner, J. D., M. S., Anthony, and J. M. Cline. 2001. Soy phytoestrogens: research on benefits and risks. Clin. Obstet. Gynecol. 44, 843-852. https://doi.org/10.1097/00003081-200112000-00022
  66. Wallerath, T., G. Deckert, T. Ternes, H. Anderson, H. Li, K. Witte, and U. Forstermann. 2002. Resveratrol, a polyphenolic phytoalexin present in red wine, enhances expression and activity of endothelial nitric oxide synthase. Circulation 106, 1652-1658. https://doi.org/10.1161/01.CIR.0000029925.18593.5C
  67. Yoon, I., J. H. Wee, J. H. Moon, T. H. Ahn, and K. H. Park. 2003. Isolation and identification of quercetin with antioxidative activity from the fruits of Rubus coreanum Miquel. Korean J. Food Sci. Technol. 35, 499-502.
  68. You, H. J., J. Y. Kim, and G. H. Jeong. 2003. $17{\beta}-Estradiol$ increases inducible nitric oxide synthase expression in macrophages. Biochem. Biophys. Res. Commun. 303, 1129-1134. https://doi.org/10.1016/S0006-291X(03)00477-7

Cited by

  1. Physiological Activities of Rubus coreanus Miq. Extracts Using Different Extraction Methods vol.28, pp.1, 2012, https://doi.org/10.9724/kfcs.2012.28.1.025
  2. Anti-microbial, Anti-oxidant, and Anti-thrombosis Activities of the Lees of Bokbunja Wine (Rubus coreanus Miquel) vol.25, pp.7, 2015, https://doi.org/10.5352/JLS.2015.25.7.757
  3. Blood Pressure Modulating Effects of Black Raspberry Extracts in vitro and in vivo vol.46, pp.3, 2014, https://doi.org/10.9721/KJFST.2014.46.3.375
  4. Characteristics of Lactic Acid Fermentation of Black Raspberry Juice Using the Lactobacillus plantarum GBL17 Strain vol.31, pp.6, 2015, https://doi.org/10.9724/kfcs.2015.31.6.773