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HEPTAGONAL KNOTS AND RADON PARTITIONS

Youngsik Huh

Abstract. We establish a necessary and sufficient condition for a hep-
tagonal knot to be figure-8 knot. The condition is described by a set

of Radon partitions formed by vertices of the heptagon. In addition we
relate this result to the number of nontrivial heptagonal knots in linear
embeddings of the complete graph K7 into R3.

1. Introduction

An m-component link is a union of m disjoint circles embedded in R3. Es-
pecially a link with only one component is called a knot. Two knots K and
K ′ are said to be ambient isotopic, denoted by K ∼ K ′, if there exists a
continuous map h : R3 × [0, 1] → R3 such that the restriction of h to each
t ∈ [0, 1], ht : R3 × {t} → R3, is a homeomorphism, h0 is the identity map and
h1(K1) = K2, to say roughly, K1 can be deformed to K2 without intersecting
its strand. The ambient isotopy class of a knot K is called the knot type of K.
Especially if K is ambient isotopic to another knot contained in a plane of R3,
then we say that K is trivial. The ambient isotopy class of links is defined in
the same way.

In this paper we will focus on polygonal knots. A polygonal knot is a knot
consisting of finitely many line segments, called edges. The end points of each
edge are called vertices. Figure 1 shows polygonal presentations of two knot
types 31 and 41 (These notations for knot types follow the knot tabulation in
[16]. Usually 31 and its mirror image are called trefoil, and 41 figure-8). For
a knot type K, its polygon index p(K) is defined to be the minimal number of
edges required to realize K as a polygonal knot. Generally it is not easy to
determine p(K) for an arbitrary knot type K. This quantity was determined
only for some specific knot types [3, 7, 9, 11, 15]. Here we mention a result by
Randell on small knots.
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Theorem 1 ([15]). p(trivial knot) = 3, p(trefoil) = 6 and p(figure-8) = 7.
Furthermore, p(K) ≥ 8 for any other knot type K.

Figure 1. Polygonal presentations of 31 and 41 knots

Let V be a set of points in R3. A partition V1 ∪ V2 of V is called a Radon
partition if the two convex hulls of V1 and V2 intersect each other. For example,
if V consists of 5 points in general position, then it should have a Radon
partition such that (|V1|, |V2|) = (1, 4) or (2, 3).

We remark that the notion of Radon partition can be utilized to describe the
knot type of a polygonal knot. In [1] a set of Radon partitions is derived from
vertices of heptagonal trefoil knots and also hexagonal trefoil knots. Similar
work was also done for hexagonal trefoil knot in [8]. These results were effec-
tively applied to investigate knots in linear embeddings of the complete graph
K7 and K6. An embedding of a graph into R3 is said to be linear, if each edge
of the graph is mapped to a line segment. In [1] Alfonśın showed that every
linear embedding of K7 contains a heptagonal trefoil knot as its cycle. And in
[8] it was proved that the number of nontrivial knots in any linear embedding
of K6 is at most one.

In this paper we give a necessary and sufficient condition for a heptagonal
knot to be figure-8 via notion of Radon partition. And we discuss how our
result can be utilized to determine the maximal number of heptagonal knots
with polygon index 7 residing in linear embeddings of K7.

Now we introduce some notations necessary to describe the main theorem.
Let P be a heptagonal knot such that its vertices are in general position. We
can label the vertices of P by {1, 2, . . . , 7} so that each vertex i is connected
to i + 1 (mod 7) by an edge of P , that is, a labeling of vertices is determined
by a choice of base vertex and an orientation of P . Given such a labelling of
vertices let ∆i1i2i3 denote the triangle formed by three vertices {i1, i2, i3}, and
ejk the line segment from the vertex j to vertex k. The relative position of
such a triangle and a line segment will be represented via “ϵ” which is defined
below:

(i) If ∆i1i2i3 ∩ ejk = ∅, then set ϵ(i1i2i3, jk) = 0.
(ii) Otherwise,

ϵ(i1i2i3, jk) = 1 (resp. −1), when (
−−→
i1i2 ×

−−→
i2i3) ·

−→
jk > 0 (resp. < 0).

The tables in Theorem 2 show the values of ϵ between triangles formed by
three consecutive vertices and edges of P . If ϵ is zero, then the corresponding
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cell in the table is filled by “×”. Otherwise, we mark by “+” or “−” according
to the sign of ϵ. For example, according to RS-I, ϵ(123, 67) = 0 and

(ϵ(123, 45), ϵ(123, 56), ϵ(234, 56)) = (1,−1,−1) or (−1, 1, 1).
In later sections, for our convenience, we use “•” to indicate ϵ ̸= 0, without
specifying the sign.

Theorem 2. Let P be a heptagonal knot such that its vertices are in general
position. Then P is figure-8 if and only if the vertices of P can be labelled so
that the polygon satisfies one among the three types RS-I, RS-II and RS-III.

45 56 67
123 ± ∓ ×

56 67 71
234 ∓ × ×

67 71 12
345 × ± ×

71 12 23
456 ± × ×

12 23 34
567 × ∓ ×

23 34 45
671 ∓ × ×

34 45 56
712 × ± ×

RS-I

45 56 67
123 ± ∓ ×

56 67 71
234 ∓ × ×

67 71 12
345 × ± ×

71 12 23
456 ± × ×

12 23 34
567 × ∓ ×

23 34 45
671 ∓ ± ×

34 45 56
712 × ± ×

RS-II

45 56 67
123 ± ∓ ×

56 67 71
234 × ∓ ×

67 71 12
345 × ± ×

71 12 23
456 ± × ×

12 23 34
567 × ∓ ×

23 34 45
671 ∓ × ×

34 45 56
712 × ± ×

RS-III

In Section 2 we discuss a possible application of Theorem 2. And the re-
maining sections will be devoted to the proof of the theorem.

2. Heptagonal knots in K7

In 1983 Conway and Gordon proved that every embedding ofK7 into R3 con-
tains a nontrivial knot as its cycle [4]. This result was generalized by Negami.
He showed that given a knot type K there exists a number r(K) such that every
linear embedding of Kn with n ≥ r(K) contains a polygonal knot of type K
[13].

It would be not easy to determine r(K) for an arbitrary knot type K. But if
the knot type is of small polygon index, we may attempt to do. For example,
Alfonśın showed that r(trefoil) = 7 [1]. To determine the number, he utilized
the theory of oriented matroid. This theory provides a way to describe geo-
metric configurations (See [2]). Any linear embedding of K7 is determined by
fixing the position of seven vertices in R3. The relative positions of these seven
points can be described by an uniform acyclic oriented matroid of rank 4 on
seven elements which is in fact a collection of Radon partitions, called signed
circuits, formed by the seven points. Alfonśın constructed several conditions
at least one among which should be satisfied if a set of seven points constitutes



370 YOUNGSIK HUH

a heptagonal trefoil knot. These conditions are described by a collection of
Radon partitions. And then, by help of a computer program, he verified that
each of these matroids satisfies at least one of the conditions. Note that all uni-
form acyclic oriented matroid of rank 4 on seven elements can be completely
listed [5, 6].

On the other hand we may consider another quantity. Let Fn be the col-
lection of all linear embeddings of the complete graph Kn, and let c(f) be the
number of knots with polygon index n in a linear embedding f ∈ Fn. Define
M(n) and m(n) to be

M(n) = Max {c(f)|f ∈ Fn}, m(n) = Min {c(f)|f ∈ Fn} .

For n < 6 these numbers are meaningless because there is no nontrivial knot
whose polygonal index is less than 6. In [8] it was shown that M(6) = 1 and
m(n) = 0 for every n. To determine M(6) the author derived a set of Radon
partitions from hexagonal trefoil knot. Since 31 and its mirror image are only
knot types of polygon index 6, by verifying that the conditional set arises from
at most one cycle in any embedded K6, the number M(6) was determined.

We remark that also the number M(7) can be determined by applying our
main theorem to a procedure as done by Alfonśın. Given a uniform acyclic
oriented matroid of rank 4 on seven elements, count the number of permutations
which produce any of the conditional partition sets in Theorem 2. Since the
figure-8 is the only knot type of polygon index 7 and the condition in the
theorem is necessary and sufficient for a heptagonal knot to be figure-8, the
counted number is the number of knots with polygon index 7 in a corresponding
embedding of K7. Hence, by getting the maximum among all such numbers
over all uniform acyclic oriented matroids of rank 4 on seven elements, M(7)
can be determined.

3. Conway polynomial

In this section we give a brief introduction on Conway polynomial which is
an ambient isotopy invariant of knots and links. This invariant will be utilized
to prove the main theorem in later sections. See [12, 10] for more detailed or
kind introduction.

Let L be a link. Given a plane N in R3, let πN : N × R → N be the map
defined by π(x, y, z) = (x, y). Then πN is called a regular projection of L, if
the restricted map πN : L → N has only finitely many multiple points and
every multiple point is a transversal double point. By specifying which strand
goes over at each double point of the regular projection, we obtain a diagram
representing L. The double points in a diagram are called crossings. Figure
2-(a) shows an example of unoriented link diagram. The diagrams in (b) and
(c) represent oriented links. Also the figures in Figure 1 can be considered to
be unoriented knot diagrams.

Let L = L1 ∪L2 be a 2-component oriented link. For each Li we can choose
an oriented surface Fi such that ∂Fi = Li. This surface Fi is called a Seifert
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Figure 2

surface of Li. Then the linking number lk(L1, L2) is defined to be the algebraic
intersection number of L2 through F1. It is known that the linking number is
independent of the choice of Seifert surface, and lk(L1, L2) = lk(L2, L1). Hence
we may denote the number by lk(L) instead of lk(L1, L2). The linking numbers
of the links in Figure 2-(b) and (c) are 1 and −1 respectively. The link in (a)
is of linking number 0 for any choice of orientation.

Let D be the collection of diagrams of all oriented links. Then a function
∇ : D → Z[t] is uniquely determined by the following three axioms:

(i) Let D and D
′
be diagrams which represent two oriented links L and L

′

respectively. If L is ambient isotopic to L
′
with orientation preserved,

then ∇(D) = ∇(D
′
).

(ii) If D is a diagram representing the trivial knot, then ∇(D) = 1.
(iii) LetD+, D− andD0 be three diagrams which are exactly same except at

a neighborhood of one crossing point. In the neighborhood they differ
as shown in Figure 3. The crossing of D+ (resp. D−) in the figure is
said to be positive (resp. negative). Then the following equality, called
the skein relation, holds:

∇(D+)−∇(D−) = t∇(D0).

If D is a diagram of an oriented link L, then the Conway polynomial ∇(L) of L
is defined to be ∇(D). Now we give some facts on Conway polynomial which
are necessary for our use in later sections.

Lemma 3 ([12, 10]). (i) Let −K be the oriented knot obtained from an
oriented knot K by reversing its orientation. Then ∇(−K) = ∇(K).

(ii) If K is trefoil, then ∇(K) = 1+ t2. And if K is figure-8, then ∇(K) =
1− t2.

(iii) Let L be an oriented link with two components. Then its Conway poly-
nomial is of the form ∇(L) = a1t+ a2t

2 + · · · with a1 = lk(L).

4. Radon partitions in heptagonal figure-8 knot

In this section we give several lemmas necessary for the proof of Theorem 2.
Throughout this section P is a heptagonal figure-8 knot such that its vertices



372 YOUNGSIK HUH

Figure 3

are in general position and labelled by {1, 2, . . . , 7} along an orientation. Some
lemmas will be described by using tables as in Theorem 2. Note that the blanks
in the tables of the following lemma and the rest of this article indicate that
the values of ϵ are not decided yet.

Lemma 4. The following implications hold for P .

(i)
45 56 67

123 ± × × =⇒

56 67 71
234 ×

67 71 12
345 ∓

(ii)
45 56 67

123 × × ± =⇒

23 34 45
671 ∓

34 45 56
712 ×

Proof. Note that (i) is identical with (ii) after relabelling vertices of P along the
reverse orientation. Hence it suffices to prove only (i). Assume ϵ(123, 45) = 1.
Then we can choose a diagram of P in which e23 and e45 produce a positive
crossing. Figure 4-(a) depicts the diagram partially. Set K+ = P and apply
the skein relation of Conway polynomial so that

∇(K+)−∇(K−) = t ∇(K0),

where K− is the cycle ⟨12#34567⟩ and K0 = ⟨12#567⟩∪⟨34∗⟩ as seen in Figure
4-(b) and (c). The conditional part of (i) implies that e45 is the only edge of
P piercing ∆123. Hence K− ∼ ⟨134567⟩ by an isotopy in ∆123. Similarly K0 ∼
⟨1#567⟩ ∪ ⟨34∗⟩. Since ⟨134567⟩ is a hexagon, K− should be trivial or trefoil
by Theorem 1. Therefore, ∇(K−) = 1 or 1 + t2 and because ∇(K+) = 1− t2,
we have

∇(K0) = −t or − 2t.

By Lemma 3-(iii) at least one edge of ⟨1#567⟩ penetrates ∆34∗ in negative
direction. Note that ∆34∗ is contained in a half space H−

123 with respect to the
plane H0

123 formed by {1, 2, 3}. Since e1# belongs to ∆123 and e#5 belongs to
another half space H+

123, the two edges are excluded from candidates. Also e56
is excluded because ∆34∗ ⊂ ∆345. Hence e67 and e71 are the only edges which
may penetrate ∆34∗. But the vertex 1 belongs to H+

34∗, which implies that
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Figure 4. K+, K− and K0

Figure 5

if e71 penetrates ∆34∗, then the orientation of intersection should be positive.
Therefore we can conclude ϵ(34∗, 67) = −1, and hence ϵ(345, 67) = −1.

Let T∞
5,123 be the set of all half infinite lines starting the vertex 5 and pass-

ing through a point of ∆123. Clearly ∆234 ⊂ T∞
5,123. Hence if we suppose

ϵ(234, 56) ̸= 0, then also ϵ(123, 56) ̸= 0, which is contradictory to the condition
of (i).

In the case that ϵ(123, 45) = −1 we can prove the implication in a similar
way. □

Lemma 5.

(i) ϵ(123, 56) = ±1 and ϵ(456, 12) ̸= 0 =⇒ ϵ(456, 12) = ±1.

(ii) ϵ(123, 56) = ±1 and ϵ(567, 23) ̸= 0 =⇒ ϵ(567, 23) = ±1.

Proof. Assuming ϵ(123, 56) = 1, the conditional part of (i) can be illustrated as
Figure 5-(a). From the figure we can verify (i). Similarly (ii) can be proved. □

Lemma 6.

(i)
45 56 67

123 • • =⇒

67 71 12
345 ×

71 12 23
456 • × ×

(ii)
45 56 67

123 • • =⇒

12 23 34
567 × × •

23 34 45
671 ×
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Figure 6. K+, K− and K0

Proof. Assuming ϵ(123, 45) = 1, the conditional part of (i) can be illustrated
as Figure 5-(b). The figure clearly shows that ϵ(345, 12) = 0, ϵ(456, 12) = 0
and ϵ(456, 23) = 0. Note that e71, e12 and e23 are the only possible edges of
P which may penetrate ∆456. Hence ϵ(456, 71) should be nonzero. Otherwise,
P = ⟨1234567⟩ can be isotoped to the hexagon ⟨123467⟩ along ∆456, which
contradicts that P is of polygon index 7 by Theorem 1. Similarly (ii) can be
proved. □
Lemma 7. P does not allow any of two cases below:

(i)

45 56 67
123 × ± ×

67 71 12
345 × ±

(ii)

23 34 45
671 ± ×

45 56 67
123 × ± ×

Proof. Suppose that (i) is true. It suffices to consider the case that ϵ(123, 56) =
ϵ(345, 71) = 1. Apply the skein relation to the crossing between e23 and e56 as
seen in Figure 6, so that K− ∼ ⟨134567⟩ and K0 ∼ ⟨1 ∗ 67⟩ ∪ ⟨5#34⟩. Then
∇(K0) should be −t or −2t, that is, the linking number of K0 is −1 or −2.
Note that ∆5#3 ∪∆345 is a Seifert surface of ⟨5#34⟩. Therefore∑

i∈{1∗,∗6,67,71}

(ϵ(5#3, ei) + ϵ(345, ei)) = −1 or − 2.

By our assumption ϵ(345, 67) = 0 and ϵ(345, 71) = 1. Clearly we know that
ϵ(5#3, ei) = 0 for i = 1∗, ∗6. Also ϵ(345, ∗6) is 0 because e∗6 is a segment of e56.
Select the point # so that ∆5#3 ⊂ ∆356, hence ϵ(5#3, 67) is 0. Therefore the
summation should be −1, and ϵ(345, 1∗) = ϵ(5#3, 71) = −1. But the vertex 1
belongs to H+

5#3 as seen in the figure, hence if e71 penetrates ∆5#3, then the
orientation of intersection should be positive, which is a contradiction.

(ii) is derived directly from (i) by relabelling the vertices after reversing the
orientation of P . □

Two integers i and j indicate the same vertex if i ≡ j (mod 7). For an
integer i, define I(i) to be the number of edges of P penetrating ∆i,i+1,i+2,
that is,

I(i) =
∑

j∈{i+3,i+4,i+5}

|ϵ((i, i+ 1, i+ 2), (j, j + 1))| .
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Figure 7

Lemma 8. There exists no integer i such that I(i) ≥ 2 and I(i+ 1) ≥ 2.

Proof. Suppose that I(1) ≥ 2 and I(2) ≥ 2. Then, up to the relabelling
(1, 2, 3, 4, 5, 6, 7) → (4, 3, 2, 1, 7, 6, 5)

it is enough to observe the following six cases:

(i)

45 56 67
123 • •

56 67 71
234 • •

(ii)

45 56 67
123 • •

56 67 71
234 • •

(iii)

45 56 67
123 • •

56 67 71
234 • •

(iv)

45 56 67
123 • •

56 67 71
234 • •

(v)

45 56 67
123 • •

56 67 71
234 • •

(vi)

45 56 67
123 • •

56 67 71
234 • •

For Case (i), apply Lemma 6 to ∆123 and ∆234. Then we have:

71 12 23
456 • × ×

12 23 34
567 • × ×

But, applying Lemma 4-(i) to ∆456, ϵ(567, 12) should be 0, a contradiction.
Also Case (iii) can be rejected in a similar way. For Case (vi) to be excluded,
only Lemma 6 is enough.

For Case (ii) we may assume further that ϵ(123, 45) = 1. Then, for e71
to penetrate ∆234, the vertex 7 should belong to H−

123. This implies that the
region ∆456 ∩ H+

123 is not penetrated by any edge of P , and e45 and e56 are
the only edges of P penetrating ∆123. Hence we can isotope P to ⟨134567⟩ as
illustrated in Figure 7, which contradicts Theorem 1. Also in Case (iv) P can
be isotoped to ⟨245671⟩ in a similar way.

For case (v), we may suppose further that ϵ(123, 45) = 1. Then ∆234 belongs
toH−

123. If ϵ(123, 67) = 1, then e71 belongs toH
+
123 and hence can not penetrate

∆234, a contradiction. Similarly if ϵ(123, 67) = −1, then e56 can not penetrate
∆234. □

Lemma 9. There exists no pair of distinct integers (i, j) such that:



376 YOUNGSIK HUH

i+ 3, i+ 4 i+ 4, i+ 5 i+ 5, i+ 6
i, i+ 1, i+ 2 • • ×

j + 3, j + 4 j + 4, j + 5 j + 5, j + 6
j, j + 1, j + 2 × • •

Proof. By Lemma 8 it is enough to observe the four cases: (i, j) = (1, 3), (1, 4),
(1, 5) and (1, 6). The first two cases are contradictory to Lemma 6. For the
fourth case, applying Lemma 6 to ∆123, we have:

71 12 23
456 • × ×

And apply Lemma 4 to ∆456, to have ϵ(671, 23) ̸= 0, a contradiction.
Lastly suppose (i, j) = (1, 5). Then, we can observe which edges penetrate

∆671 and ∆712 as follows:

45 56 67
123 • • ×

12 23 34
567 × • •

Lemma 6
=⇒

56 67 71
234 × × •

71 12 23
456 • × ×

Lemma 4
=⇒

23 34 45
671 •

34 45 56
712 •

Lemma 8
=⇒

(i, j) = (1, 5)

23 34 45
671 • × ×

34 45 56
712 × × •

We may assume ϵ(123, 45) = 1. Then clearly ϵ(123, 56) = −1, and by Lemma 4
ϵ(671, 23) = −1. Now we apply the skein relation to e23 ∪ e67 as seen in Figure
8 so that K− = P , K0 ∼ ⟨6#345⟩∪⟨2∗1⟩ and ∆2∗1 ⊂ ∆123. Then immediately
it is observed that

ϵ(2 ∗ 1, 6#) = ϵ(2 ∗ 1,#3) = ϵ(2 ∗ 1, 34) = 0.

Recall ϵ(123, 56) = −1, which implies that if ϵ(2 ∗ 1, 56) ̸= 0, then the value
should be negative. Therefore, considering ∇(K0) = t or 2t, it should hold that

ϵ(2 ∗ 1, 45) = 1, ϵ(2 ∗ 1, 56) = 0

and e56 penetrates ∆∗31 = ∆123 − ∆2∗1. Since ∆∗31 ⊂ H−
671, the vertex 5

belongs to H−
671. Hence e56 ⊂ H−

671, which is contradictory to ϵ(712, 56) ̸= 0
because ∆712 belongs to the other half space H+

671. □

Lemma 10.
(i) For every i, I(i) ≥ 1.
(ii) There exists an integer i such that I(i) ≥ 2.
(iii) For every i, I(i) < 3.
(iv) If I(i) = 2 for some i, then ei+4,i+5 should penetrate ∆i,i+1,i+2.

Proof. (i) Suppose I(1) = 0, that is, ∆123 is not penetrated by any edge of P .
Then we can isotope P along ∆123, so that P ∼ ⟨134567⟩. By Theorem 1, the
hexagon ⟨134567⟩ is trivial or trefoil, a contradiction.
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Figure 8. K−, K+ and K0

(ii) Suppose I(i) = 1 for every i. Then, among e45, e56 and e67, only one
edge penetrates ∆123. Firstly assume that e45 does. Then, applying Lemma 4
repeatedly, we have a sequence of implications:

45 56 67
123 • × × =⇒ 67 71 12

345 • × × =⇒ 12 23 34
567 • × ×

=⇒ 34 45 56
712 • × × =⇒ 56 67 71

234 • × ×

But, by Lemma 4 again, the first and last tables are contradictory to each
other. The case that e67 penetrates the triangle is rejected in a similar way.

Now it can be assumed that every ∆i,i+1,i+2 is penetrated only by ei+4,i+5.
Then, applying Lemma 5 repeatedly, we have that

45 56 67
123 × ± × and

67 71 12
345 × ± × ,

which is contradictory to Lemma 7.
(iii) Suppose I(1) = 3. Then we have two implications as follows:

45 56 67
123 • •

Lemma 6
=⇒

71 12 23
456 • × ×

Lemma 4
=⇒

23 34 45
671 • ,

45 56 67
123 • •

Lemma 6
=⇒

23 34 45
671 ×

But these are contradictory to each other.
(iv) Suppose that ∆123 satisfies the following:

45 56 67
123 • × •

Then it is enough to observe two cases (ϵ(123, 45), ϵ(123, 67)) = (1,−1) and
(1, 1). These cases are depicted as in Figure 9-(a) and (b) respectively. In the
first case 5 and 6 are the only vertices which belong to H+

123. Therefore P can
be isotoped to ⟨1234 ∗#7⟩ along the tetragon formed by {∗, 5, 6,#}. And lift
e∗# slightly into H−

123, then we have I(1) = 0 for the resulting heptagon, a
contradiction.

For the second case we observe which edges penetrate ∆234. Note that
∆234 ⊂ T∞

5,123. Hence if a line starting at the vertex 5 penetrates ∆234, then it
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Figure 9

also penetrates ∆123. This implies ϵ(234, 56) = 0. Also ϵ(234, 71) = 0, because
e71 belongs to H+

123 but ∆234 belongs to the other half space H−
123. Therefore

e67 is the only edge of P penetrating ∆234. Furthermore the orientation of
intersection should be positive. This can be seen easily from Figure 9-(c). Let

N be a plane in R3 orthogonal to
−→
23. And let π : R3 ≡ N × R → N be the

orthogonal projection onto N such that the vertex 3 is above the vertex 2 with
respect to the R-coordinate. Figure 9-(c) depicts the image of H0

123 ∪ H0
234

under π. Suppose ϵ(234, 67) = −1. Since ϵ(123, 67) = 1, the vertex 6 should
belong to H−

123 ∩ H+
234 which corresponds to the shaded region in the figure.

Then, as seen in the figure, it is impossible that e67 penetrates both ∆123 and
∆234.

In a similar way e45 should be the only edge of P penetrating ∆712 and the
orientation of intersection is positive. To summarize, we have:

56 67 71
234 × + × and

34 45 56
712 × + ×

This contradicts Lemma 7. □

5. Proof of Theorem 2

We prove the “only if” part of Theorem 2 by filling in the table of penetra-
tions in P . By Lemma 10 it can be assumed that:

45 56 67
123 • • ×

Applying Lemma 6 to ∆123 and Lemma 4 to ∆456, we have the initial status
S0 as shown in Table 1. Considering Lemma 9, we know that the row of 567
should be filled by (×, •,×) or (×,×, •). The second is excluded by Lemma
4. Lemma 10-(iv) guarantees ϵ(671, 45) = 0. Hence the status S′

0 is derived.
Observe how the row of 712 can be filled. I(7) should be 1 or 2 by Lemma 10-(i)
and (iii). In fact I(7) should be 1 by Lemma 8. And (•,×,×) and (×,×, •)
are disallowed by Lemma 4, hence S′′

0 is derived.
In a similar way we know that 234 should have (•,×,×) or (×, •,×). Hence

S′′
0 can proceed to the status S1 or S2.

Case 1: the row of 234 is filled with (•,×,×). Observe 345 in S1. Apply
Lemma 4 to ∆234. Then ϵ(345, 67) = 0, and ϵ(345, 71) ̸= 0. Therefore we
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obtain S′
1. Finally, let S′

1−1 (resp. S′
1−2) be the status obtained from S′

1 by
setting ϵ(671, 34) to be zero (resp. nonzero).

Note that if the table is completely filled with “•” and“×”, then the ori-
entation of intersection is automatically determined. See S′

1−1. Since 123 has
(•, •,×), the possible orientation is (+,−,×) or (−,+,×). Assume the for-
mer. Applying Lemma 4 to ∆671, we know ϵ(671, 23) = −1. Also applying the
lemma to ∆456 and ∆234, we have ϵ(456, 71) = 1 and ϵ(234, 56) = −1. Further-
more, from the assumption ϵ(123, 56) = −1, it is derived that ϵ(567, 23) = −1
and ϵ(345, 71) = 1 by Lemmas 5 and 7 respectively. Similarly ϵ(712, 45) = 1.
Therefore S′

1−1 is identical with RS-I.
For S′

1−2, first determine the orientations in the second column following the
method used above. Then, under the assumption ϵ(123, 56) = −1, it should
hold that ϵ(671, 34) = 1. This implies ϵ(671, 23) = −1, from which the orien-
tations in the first column can be determined. In this way we can verify that
S′
1−2 is identical with RS-II.

Case 2: the row of 234 is filled with (×, •,×). If 671 has (•, •,×) in S2, then
234 should have (•,×,×) by Lemma 6, a contradiction. Therefore S2 proceeds
only to S′

2. Suppose that 345 can be filled with (•,×,×). Then also we can
derive a contradiction by applying Lemma 4 to ∆345. Hence, in S′

2, 345 should
have (•, •,×) or (×, •,×). In the former case we have S′

2−1 which becomes
RS-II after relabelling vertices by the cyclic permutation sending (3, 4, 5) to
(1, 2, 3). In the latter we have S′

2−2 which is RS-III.

Now we prove the “if” part of the theorem. Suppose P is a heptagonal knot

satisfying RS-I, II or III. Let N be a plane orthogonal to
−→
23, and π : R3 ≡

N×R → N be the orthogonal projection onto N such that the vertex 3 is above
the vertex 2 with respect to the R-coordinate. We will construct a diagram of
P from the projected image π(P ). Without loss of generality it can be assumed
that ϵ(123, 45) = 1 and ϵ(123, 56) = −1. Then, since the vertex 3 is above 2,
the edge e45 should pass above e12 as illustrated in Figure 10.

Suppose P corresponds to RS-I. Then similarly e56 passes above e12 and
below e34. Note that if 7 belongs to H−

123, then e23 can not penetrate ∆671.
Hence 7 ∈ H+

123. Since ϵ(567, 23) = −1, the point π(e23) should belong to
π(∆567). Therefore the point π(7) belongs to the shaded region shown in Figure
11-(a). From this we know that π(7) /∈ π(∆456). And clearly π(1) /∈ π(∆456).
Hence, for ϵ(456, 71) to be nonzero, π(e71) should intersect both π(e45) and
π(e56). In fact e71 passes above e45 because ϵ(712, 45) = 1 and e45 passes
above e12. Therefore, since ϵ(456, 71) is nonzero, e71 should pass below e56.
The resulting diagram represents figure-8 as seen in Figure 11-(b). Also when
P corresponds to RS-II, we can obtain a diagram of figure-8 in the same way.

Suppose P corresponds to RS-III. Again assume ϵ(123, 45) = 1 and ϵ(123, 56)
= −1. Then also in this case we have that 6 ∈ H−

123 and 7 ∈ H+
123. Especially

it should hold that 6 ∈ H+
234 and 7 ∈ H−

234, because ϵ(234, 67) = −1. Hence
the vertex 6 is projected into the shaded region in the top-left of Figure 12-(a)
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Table 1

45 56 67
123 • • ×

56 67 71
234

67 71 12
345 ×

71 12 23
456 • × ×

12 23 34
567 ×

23 34 45
671 •

34 45 56
712

S0

⇒

45 56 67
123 • • ×

56 67 71
234

67 71 12
345 ×

71 12 23
456 • × ×

12 23 34
567 × • ×

23 34 45
671 • ×

34 45 56
712

S′
0

⇒

45 56 67
123 • • ×

56 67 71
234

67 71 12
345 ×

71 12 23
456 • × ×

12 23 34
567 × • ×

23 34 45
671 • ×

34 45 56
712 × • ×

S′′
0

45 56 67
123 • • ×

56 67 71
234 • × ×

67 71 12
345 ×

71 12 23
456 • × ×

12 23 34
567 × • ×

23 34 45
671 • ×

34 45 56
712 × • ×

S1

⇒

45 56 67
123 • • ×

56 67 71
234 • × ×

67 71 12
345 × • ×

71 12 23
456 • × ×

12 23 34
567 × • ×

23 34 45
671 • ×

34 45 56
712 × • ×

S′
1

45 56 67
123 • • ×

56 67 71
234 • × ×

67 71 12
345 × • ×

71 12 23
456 • × ×

12 23 34
567 × • ×

23 34 45
671 • × ×

34 45 56
712 × • ×

S′
1−1

45 56 67
123 • • ×

56 67 71
234 • × ×

67 71 12
345 × • ×

71 12 23
456 • × ×

12 23 34
567 × • ×

23 34 45
671 • • ×

34 45 56
712 × • ×

S′
1−2

45 56 67
123 • • ×

56 67 71
234 × • ×

67 71 12
345 ×

71 12 23
456 • × ×

12 23 34
567 × • ×

23 34 45
671 • ×

34 45 56
712 × • ×

S2

⇒

45 56 67
123 • • ×

56 67 71
234 × • ×

67 71 12
345 ×

71 12 23
456 • × ×

12 23 34
567 × • ×

23 34 45
671 • × ×

34 45 56
712 × • ×

S′
2

45 56 67
123 • • ×

56 67 71
234 × • ×

67 71 12
345 • • ×

71 12 23
456 • × ×

12 23 34
567 × • ×

23 34 45
671 • × ×

34 45 56
712 × • ×

S′
2−1

45 56 67
123 • • ×

56 67 71
234 × • ×

67 71 12
345 × • ×

71 12 23
456 • × ×

12 23 34
567 × • ×

23 34 45
671 • × ×

34 45 56
712 × • ×

S′
2−2

Figure 10

and the vertex 7 into the bottom-right. Now we observe two possible cases
according to the position of π(6) with respect to π(e45) as shown in Figure
12-(b) and (c). Again since ϵ(234, 67) is nonzero, e67 should pass below e34 in



HEPTAGONAL KNOTS AND RADON PARTITIONS 381

Figure 11

Figure 12

both diagrams. As discussed in the case of RS-I, from ϵ(456, 71) = 1, we know
that e71 passes above e45 and below e56. Then the resulting diagram in (b)
represents figure-8. In (c), for e71 to pass above e45 and below e56, the two
vertices 6 and 7 should belong to H−

145, which implies that e67 passes above
e45. Therefore also the resulting diagram in (c) represents figure-8.
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