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HOLDER ESTIMATES FOR THE CAUCHY-RIEMANN
EQUATION ON PARAMETERS

SANGHYUN CHO

ABSTRACT. Let {Qr},cs be a family of strictly convex domains in C".
We obtain explicit estimates for the solution of the d-equation on Q x I
in Holder space. We also obtain explicit point-wise derivative estimates
for the D-equation both in space and parameter variables.

1. Introduction

Let I € R be a bounded open set containing 0, and let {Q;}rer be a family
of smoothly bounded domains in C"* with smooth defining function p, for Q.
for each 7 € I, and set

QI::UQTX{T}:QXI.
Tel

Then Q; is a bounded domain in R2»+4,

Definition 1.1. {Q;},¢; is said to be a smooth strongly convex perturbation
family of Qg if €2, is strongly convex for each 7 € I and there is a family of
diffeomorphisms {U, },¢; such that

(1) v Zﬁo — ﬁ’r’ Uy = Identity,

(2) U, (b) = b2, for each 7 € I and ¥, is smooth on 7 € I variable.

The solvability of the Cauchy-Riemann equation (J-equation) and the tan-
gential Cauchy-Riemann equation (d-equation) and the estimates of the solu-
tions in various topologies such as in Sobolev, LP and Hdlder spaces are key
subjects in several complex variables for last several decades [1, 6, 7, 8, 9, 10].

To study the local behavior of the solutions of 9 or 0, equation, we some-
times need to construct a family of strongly pseudoconvex (or strongly convex)
domains which are foliated inside of a domain near a boundary point. Let
D c C™ be a domain and bD is smooth near zy € bD and the Levi-form of
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bD has k positive eigenvalues at zg. In this situation, the author constructed
a family of smooth strongly convex family of domains of complex dimension
k which are foliated inside of D, making a neighborhood of zy in D, and got
estimates of d and Jj equation in Sobolev spaces near zg € bD [3].

Let W be a set and k£ be a nonnegative integer and 0 < o < 1. We say
f € C**(W) if the norm defined by

\fleaw = |flew + |D¥ flaw

is finite. Here |f|rw denotes the C* norm on W and |D¥ f|,.w denotes the
sum of the Holder norm of all derivatives of f of order k. We set C*° = C*, and
set C%® = C“, the usual Hélder space, and write |f|o0 = |f|. We can extend
k,a
(Pq -

In this paper, we prove stability of Holder estimates for 0 and obtain point-
wise derivative estimates for d-equation on € x I for space and parameter
variables. Concerning the parameter dependence of the d-equation, one can
refer to the most fundamental papers of Hamilton [5].

In the sequel, we let {Q2;},c; be a smooth strongly convex perturbation
family of Q¢ CC C™ with smooth defining function p, for €, for each 7 € I.
We also assume that |I], the diameter of I, is sufficiently small so that the
estimate (2.4) in Section 2 holds. The following theorem is the stability of the
Holder estimates.

Theorem 1.2. For any fr € C(, ¢ (), 1 < q <n, such that 0f, =0 in Q,

in the distribution sense, there exists u, € C(lp/i,l)(QT) such that Ou, = f, in
Q. and

(1.1) [urli/20.) < Clfrl@.),

where C' is a constant independent of f. and T € I.

| - |k, to the (p, g)-forms, denoted by C ) by estimating its components.

When we study function theories on domains in C”, such as extending -
closed forms on bD to d-closed forms on D with Hélder or Sobolev estimates,
we sometimes need to get derivative estimates for the solutions of d-equation
on  in space as well as in parameter variables. Let D' and D! be the
differential operators of order I; in space variables and of order ls in parameter
variables respectively. Also if f = ZII\ZP,Ileq fradzt ndz7 € Cé“p’qy we set

! l
IDLfG) = Y IDLfra(2)l,
[I|=p,|J|=q
where |D fr ;(2)| = Pla=t D2 fr,5(2)] and « is a multi-index.
We have the following derivative estimates for the O-equation in Holder
space. As for the estimates in Sobolev space [3], we lose some regularity.

Theorem 1.3. Assume f, € C(kO’C;)(ﬁT), 1<g¢<n 0<a<l,anddfr =0

(in distribution sense if k = 0) in Q. Then there exists u, € C’fofql_l)(QT)
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such that Ou, = f in Q, and for each 0 < o < o and for each z, € Q;, we
have

DL ur(zr)] + [ Diur(z)]
2 S CaalorG)I™ 3 DL L)+ |frliova

0<y<i-1
ettt i+l
+ |PT<ZT)| 5 |fT‘a+ ‘p'r(z‘r)‘ l+2|fT(zT)|)
for 1 <1< k41, where Cy o is a constant independent of T € I and f,.

Remark 1.4. In Theorem 1.2, we gain 1/2 derivatives. We note that
()|

is more or less same as |f|s4i1,o in a sense. Therefore we may regard the third
term in the right hand side of (1.2) is equivalent to |f|;4o—1/2—a’/2. Assuming
that 0 < a < 1/2, we therefore gain 1/2+ o/ /2 — o derivatives which is smaller
than 1/2 because a > «'.

l,a

In some cases, f is given in the form f = p*~1*%g forsome k > 1,0 < a < 1
and for some form g¢. In this case the estimate in (1.2) becomes:

Corollary 1.5. Under the same assumptions as in Theorem 1.3, we further
assume that D' f. =0 on b,, for each 0 <1< k — 1, for some k > 1. Then

(1.3) |D’;u7(z.r)| + ‘Dlrcu‘r(zr” < Ca|f7"k:71,a~

Remark 1.6. (1) When k = 1, (1.3) is the derivative estimate of the solution
both on space and parameter variables.

(2) Let D be a smoothly bounded domain in C™ with smooth defining func-
tion p, and let hg be a Jj-closed form on bD. To solve d-closed extension
problem on D with Holder estimates, we first extend hy to h defined on D so
that f := 0h = p*~1*%g for some k > 1, 0 < o < 1 and for some form g,
depending on the regularity of hyg.

2. Integral representation on parameter

Let Qg be a smoothly bounded strongly convex domain in C™ and let
{Q:}rer be a smooth strongly convex perturbation family of Qg with smooth
defining function p, for Q. for each 7 € I. In this section, we consider the
solutions of d-equation in Holder space in space and parameter variables and
prove the stability of the solution in Holder space as well as pointwise deriv-
ative estimates of the solution. In the sequel, we let A < B mean that there
is a constant C, independent of parameter 7, such that A < CB (C may be
different from line to line).

Definition 2.1. Let D be a domain in C" with smooth boundary bD. A
C! function G((, 2) = (91((, 2), ..., 9n(C, 2)) is called a Leray map for D if it
satisfies (G((, 2),( — z) # 0 for every ((,z) € bD x D.
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For each 7 € I, consider the map
o\ (Opr  Opr
GL(¢,2) = < p )( br 22 >
¢ 2@ In
where p, = p,(¢) is a boundary defining function for €2,. Then G is indepen-

dent of z, and it is a Leray map because {2, is a strongly convex domain for
each 7 € I. Using G1, we set

o (L) (C=2d0) ((dl—dzd)\""
C\2mi) -2 ¢ —2f? 7
o= () LGt (Escnd)
S \2mi ) (GL,¢—2) (GL ¢ —2) ’

(I)Ol _ (1)n <§_ z, dC> A <G71—>dc>

2ri) [C—2P " {GL¢—2)

(2.2) — B k1 = ka2
(dC — dz,dC) (9,.GL,d¢)
> ( P ) A<<G;,<—z>) |

ki+ko=n—2

(2.1)

K

and

where O¢, = O; + 0,. We use the notation ®9, @} and D! to denote the
summand of forms with degree (0,q) in z in <I>0 <I>1 and <I>01 respectively.
Note that ®° is independent of 7 and ®1 and %! depend on Gi which is the
derivatives of p..

Since Q, C C™ is strongly convex, the denominators of ®1 and ®% are
different from zero for ¢ € b2, and z € Q,, and they depend smoothly on 7.
We have the following homotopy formula for 9 on convex domains by Leray-
Koppelman.

Theorem 2.2. For f. € C(o )( ), 1 <q<mn, we have

fr(2) = 8ZT7(—IfT(z) +T7(—1+15f7(z>7 z € Qr,

where

(23)  TOf(2) = / 0 (2 A F(O) — / B0, (C,2) A 20,

T T

Note that p, — pg in C°° topology as 7 — 0 and there is a family of
diffeomorphisms ¥, : Qy — Q., ¥(bQ) = bQ,, ¥, is identity and ¥, is
smooth on 7 € I variable. Since Qg is strongly convex and p, = (V-1)*po,
there is a uniform constant ¢ > 0, independent of 7 € I, such that

2n

Pp,
(2.4) cla)® < Z 0.0 p x)a;a;

3,j=1
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for all € b2, and a € R?" provided ||, the diameter of I, is sufficiently small.
The estimate in (2.4) is essential in the estimates of Lemma 11.2.9 in [2] and
we obtain that

Lemma 2.3. There is a constant c, independent of T € I, such that for any
Ceb,, and z € Qr,

(2.5) Re(Gr,(—2)>c¢ (—=pr(2) +1¢ - z|2) .
Set
hr(¢2) = (G7,¢ —2) and (¢, 2) = [C — 2|

As in the proof of Lemma 11.2.10 in [2], for each fixed z, near bQ2,, there is a
special coordinate system (¢,y) = (', t2,—1,y) defined in a neighborhood U of
2z, such that ¢;(2,) = 0, and y = p, (), tan—1 = Imh1({, 2). Then the estimate
in (2.5) shows that there exist constants ¢p > 0 and Cj independent of 7 € I
such that

he(¢,2) = collpr(2) + [t + [t2n-1),

(26) o(lps(2)| + [t]) < 1 — 2| < Collps(2)] + [t])-

The estimates in (2.6) are the key ingredients to prove the %—H'dlder estimates
for O on strictly convex domains.

Let {U,},¢cr be the family of diffeomorphisms defined before (2.4) or in the
Definition 1.1. By the generalized change of variables theorem, one obtains
that

(2.7) /wz/\l’iw, and / w':/ Vo'
Q. ) b2, b

where w and w’ are 2n and 2n — 1 forms on €, and b); respectively. Using
the relations in (2.7), we may bring the estimates on Q. onto Q.

For any ®, € C&’q) (), set ®g = Vi, € Cé“p)q)(ﬁo). Since |DFW-1| < Cy,
independent of 7 € I, it follows that

k

(2.8) D5, ()] < O 3 DL (=)
=1

for an independent constant Cy > 0, where z, = U, (z2).

Note that the estimates in (2.5) and (2.6) are the key ingredients to prove
the Holder estimates of -equation gaining % derivative. Since the estimates in
(2.5) and (2.6) are independent of 7 € I, and the solution operator in (2.3) is the
Bochner-Martinelli integral, we can pull-back the estimates of the solution of
d-equation on g to the estimates of the solution on (2, via (2.7) and (2.8) with
k = 1. Then the rest of the proof will be the same as in the proof of Theorem
11.2.11 in [2] proving Theorem 1.2, the stability of the Holder estimates.
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3. Derivative estimates

In this section, we want to get derivative estimates for the solutions of 0-
equation on §2, in space as well as in parameter variables. As for the estimates
in Sobolev space [3], we lose some regularity when we take derivatives of the
solution. For each z,{ € Qp, we set z; = U, (2) and {; = U, ({), and we let

pr(2) = p(, (2).
Lemma 3.1. Assume g, € C(’iq(QT) and set g = U*g.. Then

k k

(3.1) IDYg(2)] S Y IDL gr(2)| and DY g, (2r)| S |DLg(z)|-
=1 =1

Proof. Note that ¥, — Iy as 7 — 0 in C®(Q x I) topology, where I is
the identity map on €. Therefore it follows that |D7'[U.(2)?]] < Cj for
any integers m,p < k. Since D¥g(z) is the sum of the terms of the form
D! g-(z:)D7'[W,(2)?], where 1 < | < k and m,p < k, the first estimate in
(3.1) holds. Similarly, if we consider the map W1, the second estimate in (3.1)
holds. (]

In the sequel, we let S.(z) be a ball of radius € > 0 with center at z. We
need the following integral estimates for the form ®° defined in (2.1). We note
that ®° is independent of 7 € I.

Lemma 3.2. Let D be a smoothly bounded domain in C™ with smooth defining
function p. For each z € D and for any € > 0 such that S.(z) C D, we set
D. =D\ Bc(2). Then for any o/ > 0 we have

(3.2) / B0(C,2)IC — 2 < Cr
bD
and

(3.3) < Curlp(2)| .

/D V0(C )

Proof. Choose a neighborhood U of z where the special local coordinate func-
tions (¢, p) = (t',ton—1, p) are defined where t = (', t2,_1) are tangential coor-
dinates. Using the expression of ®° in (2.1), and integrating with respect to
ton—1, and then using polar coordinates |t'| = r, we have

/ [@°(C,2)[IC — 2| 5/ |¢ — 2|72+
veng bDAU
< / dtydty - digy
~ Jiri<a (tan—a| + [P —27

A 2n—3
S/ r \lnr|dr<c~,a/.
0

,r2n—2—o¢’ ~



HOLDER ESTIMATES FOR THE CAUCHY-RIEMANN EQUATION 247
This estimate holds for each coordinate neighborhood and hence it follows that
O ’
| 1#alic - = < cu
bD

This proves (3.2).
To prove (3.3), we use Stokes’ theorem and then polar coordinates [ —z| = r:

U’V@%@@ / V.9°(¢, 2)
D. e<|¢—z|<p(2)]

A
5/‘r4Wﬁ/ |wmaH/ 12°(¢, 2)
[p(2)] [(—z]=e [C—z|=|p(2)|
<o)

because |p(2)|* In|p(z)] < Cu for each o’ > 0, and € < |p(2)). O

g/ IV 20(C,2)| +
[C—=2|>]p(2)]

To get the derivative estimates of d-equation, we need to get derivative
estimates of ®%!. For a convenience, we drop the index 7 in the expressions of
Zry Cry pry B and ®9! etc. Then we have

n—1 i l -1
| — 2| 1
S : - + . :
4 A | R s 2 R T
n—1 | 1 -1
k=1 | j=1 =

where h! = hl((, 2) satisfies the estimate (2.6).

Lemma 3.3. For each real numbers 0 < o/ < o < 1, we have

L;RAQZHC—AQS(QQJMzN4+%%7cmd
(3.5)

/A&@¢>smmar“”?
b2

Proof. Fix z € Q for a moment and choose a neighborhood U of z where the
special local coordinate functions (¢,y) = (t',ten—1,y) are defined satisfying the
estimates (2.6). Set § = |p(z)| for a convenience. Let’s estimate, for example,
the integral containing R}d term which is the optimal case:

(3.6)
1

Ru(C.AIC -1 = [
/anU M | | panu [PHTETC — z[2R=1ma
< dtidts - - - dtoy,—1

<A (64 Jton_1| + |t/]2)"F (6 + |¢7])2k—1-
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for some constants A and C independent of 7, where we have used the estimates
(2.6) and the fact that 2k — 1 — o > 0. If we integrate the right side of (3.6)
with respect to ta,—1 and then use polar coordinates |t'| = r, we obtain that

r2n=3dy

A
1 _a<
/me Ba(G2)le =" 2 /0 (0 + r2)n—k+=1(§ 4 y)2k—1-a

A 2n—3
r dr 1+l
5/ SCOC7(1'6 =+ 2.
0o &

1+2a/ r2n72+a’7o¢

(3.7)

Similarly the other integrals, involving R};j, can be estimated and we get the
first part of the estimate in (3.5).
For the second part of the estimate in (3.5), one obtains, as in (3.7), that

7‘2"_3d7‘

A
' <
/anU Ry (¢, 2) N/O (8 + r2)n—hkH—1(§ 4 r)2k-1

A
dr
S| e SO
/0 (5 + ’1"2)5[71 n

Now we are ready to prove Theorem 1.3, the pointwise derivative estimates
for the solution of d-equation.

Proof of Theorem 1.3. We first assume that f, € Cg;’;l(ﬁT). Since |DLW.| <
C, independent of 7 € I, and by virtue of (2.7) and (2.8), we only need to
estimate |DiT ur(2z;)|. Note that the solution w., is given by u, = T4 f, because
df, = 0 where TY is given in (2.3). Set f = Uf,, u = (¥;)*u,, and set
z=V-1(z). As in (2.7), we pull-back our solution to )y and we can write:

u(z) = /Q B0 (W, (0), W1 (2)) A F(T,(0))
- / L (W0, B2) A S Q) = () — (o)

In view of Lemma 3.1, it is enough to estimate |DLu(z)|.

At first, let’s estimate the derivatives of u°(z). For a convenience of notation,
we set Qo =Q, (; =V, ({) = and 2z, = VU, (2) = z for each 2,{ € Q. For a
moment, we fix z € {2 and choose € > 0 so that S¢(z) C Q, and set Qe = Q\S(z)
where ((z) is the ball of radius € > 0 with center at z. Then we can write

(3.9) u(z) = / 80 (C2)AF(O) + / LGN = 1) ().

€ e

Assume that f = deZJ, where J = (1,...,q) and set ¢, = % Using

the relation aig» (%) =-2(n— 1)‘51%, and by using Stokes’ theorem,
J

C—z[?" 2
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it follows that

(3.10)
15(2)
q .
B (71)j+1 a 1 L
7%; n—1 /ﬁ<z>aCJ‘ <|§—z|2n—2) fr(Q) AdztIe
q .
e ! S
_ Cn; "l </b o Wﬁ](o[dcj] i /ﬁe(z) |¢ — z|2n—2 a¢; (C)>
Adztia

where © denotes the corresponding term is omitted. Similar expression holds

for general (0, g)-form f. Therefore it follows that

(3.11)

D156 5 [
bBe(z)

S I+ 0@ f -

1D-(I¢ = Z|’2”+2)||f(<)l+/ ID.(1¢ - 272421 2L ()

Be(2) 9¢;

To estimate |D.LI5(z)| for I > 2, we use the expression of I§(z) in (3.10),
and use Stokes’ theorem inductively together the fact that D, (|¢ — 2z|?"72) =
—D¢(|¢ — 2|*"2). Then one obtains that

(3.12) |DLI5(2)] < O (Ifli-1 + O(e)l fl1).-

Now let’s estimate D.I{(z). Note that the integrand of I{(z) is in C™
class (in z-variable) and hence we can differentiate I{(z) under the integral
sign. Again we use Stokes’ theorem inductively together the fact that D, (|¢ —
z[*"72) = —D¢(|¢ — 2|*"72) to obtain that

(3.13)
|mmm44vx&m@M&WQ+Mg&m@M%WQ

+ [ @2@wAmﬂm4:mw+@@+@@.
bBe(2)
Note that
(3.14)
I5(2) < / )1 (¢, 2) A (DO - Dl_lf(Z))’
bBe(2)

4+m*ﬂ@W/ Y1 (C.2)| S O flira + D' f(2)]-
bBe(2)
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As in (3.14), we write

15, (2) / V.80, (¢, 2)] (DU F(C) — D f ()
(3.15)

+D' ()] ‘/Q Va®y_1(C,2)| = Iiy(2) + Iz ().

In view of (3.3), we have

(3.16) Tin(2) < Carlp(z)| "' [D'7 f(2)]

for each o/ > 0.
Using polar coordinate | — z| = r and from the fact that f € C'(]i’;‘(Q),
I —1 <k, it follows, from (2.1), that

(=) < Olflieso@) / V.20_,(¢,2)] ¢ — 2]°
(3.17)

A
< Colfli—1,a00) / rldr < Colfli-1,0(0)
0

for some A > ||, where |Q| denotes the diameter of 2. Combining (3.16) and
(3.17), we obtain that

(3.18) I51(2) < Cara (o) D71 ()] + 1 Fli-tagon )

for each o/ > 0.
If we use the estimate (3.2), and use the method similar to the estimate
(3.15), we obtain that

I5(2) < [ flicvaey + 1D S )] p(2) / 120, (¢, 2)IIC - 2|

< Caraa (If 1000 + 1D £l 1o(=) )

because |p(z)| < |¢ — 2| for ¢ € bQ. Letting e — 0, it follows, from (3.9) and
(3.12)—(3.19), that for each 0 < &/ < @ < 1, we have

(820)  IDL(2)] < Cara (I h-s.a0) + 1D ()] 0(2) )

fori —1 <k and for f € 05)21(9)7 where Cy o is independent of 7 € I.

By regularization process, we can approximate f € Cg”; () by a sequence
of fs € C(]f:;l(Q) such that f5 converges to f in C*(f) space, and the cor-
responding solutions u§ converges to u’ in C**1((2) space as § converges to
zero. Thus (3.20) holds for f € C*2(Q). In view of Lemma 3.1, we see that
|DL u%(z;)| is bounded by the first two terms in the right hand side of (1.2).

Next we estimate |D'u!(z)|. For a convenience, we also drop the index 7 in
the expressions of z., (;, fr and p, etc. Choose a neighborhood U of z where
the special local coordinate functions (¢,y) = (¢, t2n—1,y) are defined satisfying

(3.19)
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the estimates (2.6). Since u! is a smooth function, we can differentiate under

the integral sign. Using (2.2), (2.6), (3.4) and (3.5), one obtains that

/b DL () A ()

Dl@Ol qu)()l
o) = S PRGN = SN 4| 2
« R 9 - * R )

I / (¢ 2)IC — 2] +|f<z>\/bw )

S 1) fla o+ p(2)[ 72 £ ()

and hence it follows that
(322) D' ()] < Coor (I/lale() 242 4 1) Ip(2) 7).

If we combine (3.22) and Lemma 3.1, we see that (1.2) holds proving Theo-
rem 1.3. (]

IN

A

Lemma 3.4. For any real number o > 0, suppose f € C*(D) and f =0 on
bD. Then

sup |p(2)|"*[f(2)] < C|flap)-
zeD

Proof. For each fixed z € D, let (, be the projection of z onto bD. Then it
follows that |z — (| = |p(z)]. Since f =0 on bD, we have

()7 1£ ()] = p(2)| 71 f(2) = F(C)] < Calp(2)] %12 = 1% fla < Calfla-
O
Proof of Corollary 1.5. If we write u = u®+u! as in (3.8), it follows that u! = 0

because fr. = 0 on b).. By Theorem 1.3, Lemma 3.1 and Lemma 3.4, and from
the given condition that D! fr=00n b, for 0 <1< k—1, it follows that

(3.23) ID'f(2)llp(2)]* < Calflia

for 0 <1 < k—1. If we combine (3.1), (3.20) and (3.23), we see that (1.3)

holds and this proves Corollary 1.5. O
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