DOI QR코드

DOI QR Code

Preparation of Manganese Oxide Porous Nanostructures using Amino-acid and its Selective C3H8 Sensing Properties

아미노산을 이용한 망간 산화물 기공성 나노 구조의 합성 및 C3H8 가스에 대한 선택적 감응 특성

  • Choi, Kwon-Il (Department of Materials Science and Engineering, Korea University) ;
  • Lee, Jong-Heun (Department of Materials Science and Engineering, Korea University)
  • Received : 2010.11.15
  • Accepted : 2011.01.19
  • Published : 2011.01.31

Abstract

Porous manganese oxide porous nanostructures were prepared by amino-acid-mediated solvothermal self assembly reaction and subsequent heat treatment at $600^{\circ}C$. When Mn-precursors were heat-treated at $400-550^{\circ}C$, the sensors did not show significant gas responses. In contrast, the manganese oxide heat-treated at $600^{\circ}C$ showed the significant gas responses, that is, the resistance decrease to 100 ppm $C_3H_8$ ($R_a/R_g$ = 2.17, $R_a$ : resistance in air, $R_g$ : resistance in gas) and the resistance increase to 100 ppm $C_2H_5OH$ ($R_g/R_a$ = 1.92). The opposite change of resistance upon exposure to $C_3H_8$ and $C_2H_5OH$ was discussed in relation to the mixed phases of manganese oxides with different valences.

Keywords

References

  1. N. Yamazoe, “Toward innovations of gas sensor technology”, Sens. & Actuators B, vol. 108, pp. 2-14, 2005. https://doi.org/10.1016/j.snb.2004.12.075
  2. Y. Shimizu and M. Egashira, “Basic aspects and challenges of semiconductor gas sensors”, MRS Bull., vol. 24, pp. 18-24, 1999. https://doi.org/10.1557/S0883769400052465
  3. Y. Shimizu, A. Jono, T. Hyodo, and M. Egashira, “Preparation of large mesoporous $SnO_2$ powder for gas sensor application”, Sens. Actuators B, vol. 108, pp. 56-61, 2005. https://doi.org/10.1016/j.snb.2004.10.047
  4. A. Kolmakov, Y. Zhang, G. Cheng, and M. Moskovits, “Detection of CO and $O_2$ using tin oxide nanowire sensor”, Adv. Mater., vol. 15, pp. 997-1000, 2003. https://doi.org/10.1002/adma.200304889
  5. Q. Wan, Q. H. Li, Y. J. Chen, T. H. Wang, X. L. He, J. P. Li, and C. L. Lin, “Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors”, Appl. Phys. Lett., vol. 84, pp. 3654-3656, 2004. https://doi.org/10.1063/1.1738932
  6. M.-W. Ahn, K.-S. Park, J.-H. Heo, J.-G. Park, D.-W. Kim, K. J. Choi, J.-H. Lee, and S.-H. Hong, “Gas sensing properties of defect-controlled ZnO-nanowire gas sensor”, Appl. Phys. Lett., vol. 93, p. 263103, 2008. https://doi.org/10.1063/1.3046726
  7. N. Yamazoe, “Toward innovations of gas sensor technology”, Sens. & Actuators B, vol. 108, pp. 2-14, 2005. https://doi.org/10.1016/j.snb.2004.12.075
  8. A. Gurlo, M. Ivanovskaya, N. Barsan, M. Schweizer-Berberich, U. Weimar, W. Gopel, and A. Dieguez, “Grain size control in nanocrystalline $In_{2}O_{3}$ semiconductor gas sensors”, Sens. & Actuators B, vol. 44, pp. 327-333, 1997. https://doi.org/10.1016/S0925-4005(97)00199-8
  9. J. Chen, L. N. Xu, W. Y. Li, and X. L. Gou, “${\alpha}-Fe_2O_3$ nanotubes in gas sensor and lithium-ion battery”, Adv. Mater., vol. 17, pp. 582-586, 2005. https://doi.org/10.1002/adma.200401101
  10. W. S. Choi, Y. Koo, Z. Zhongbin, Y. Li, and D.-Y. Kim, “Template synthesis of porous capsules with a controllable surface morphology and their application as gas sensors”, Adv. Funct. Mater., vol. 17, pp. 1743-1749, 2007. https://doi.org/10.1002/adfm.200601002
  11. O. K. Varghese, D. Gong, M. Paulose, K.G. Ong, E.C. Dickey, and C.A. Grimes, “Extreme changes in the electrical resistance of titania nanotubes with hydrogen exposure”, Adv. Mater., vol. 15, pp. 624-627, 2003. https://doi.org/10.1002/adma.200304586
  12. J. Zhang, J. Liu, Q. Peng, X. Wang, and Y. Li, “Nearly monodisperse $Cu_2O$ and CuO nanospheres: Preparation and applications for sensitive gas sensors”, Chem. Mater., vol. 18, pp. 867-871, 2006. https://doi.org/10.1021/cm052256f
  13. Y.-S. Kim, I.-S. Hwang, S.-J. Kim, C.-Y. Lee, and J.-H. Lee, "CuO nanowire gas sensors for air quality control in automotive cabin", Sens. Actuators B, vol. 135, pp. 298-303, 2008. https://doi.org/10.1016/j.snb.2008.08.026
  14. S.-J Kim and J.-H. Lee, “Preparation of nanocry-stalline CuO powders by hydrazine method and their gas sensing characteristics”, J. Kor. Sensors. Soc., vol. 16, no. 1, pp. 11-16, 2007. https://doi.org/10.5369/JSST.2007.16.1.011
  15. R. Hao, J. Yuan, and Q. Peng, “Fabrication and sensing behavior of $Cr_2O_3$ nanofibers via In situ gelation and electrospinning”, Chem. Lett., vol. 35, pp. 1248-1249, 2006. https://doi.org/10.1246/cl.2006.1248
  16. W.-Y. Li, L.-N. Xu, and J. Chen, “$Co_3O_4$ nanomaterials in lithium-ion batteries and gas sensors”, Adv. Funct. Mater., vol. 15, pp. 851-857, 2005. https://doi.org/10.1002/adfm.200400429
  17. C.-Y. Liu, C. -F. Chen, and J. P. Leu, “Fabrication of mesostructured cobalt oxide sensor and its application for CO detector”, Electrochem. & Solid-State Lett., vol. 12, pp. J40-J43, 2009. https://doi.org/10.1149/1.3074329
  18. Y.-J. Choi, I.-S. Hwang, J.-G. Park, K.-J. Choi, J.-H. Park, and J.-H. Lee, “Novel fabrication of an $SnO_2$ nanowire gas sensor with high sensitivity”, Nanotechnology, vol. 19, p. 095508, 2008. https://doi.org/10.1088/0957-4484/19/9/095508
  19. E. Comini, G. Faglia, M. Ferroni, and G. Sberveglieri, “Controlled growth and sensing properties of $In_2O_3$ nanowires”, Cryst. Growth & Des., vol. 7, pp. 2500-2504, 2007. https://doi.org/10.1021/cg070209p
  20. I.-S. Hwang, S.-J Kim, Y.-S. Kim, B.-K. Ju, and J.-H. Lee,“VOCs(Volatile Organic Compounds) sensor using $SnO_2$ nanowires”, J. Kor. Sensors Soc., vol. 17, no. 1, pp. 69-74, 2008. https://doi.org/10.5369/JSST.2008.17.1.069
  21. W.-Y. Li, L.-N. Xu, and J. Chem, “$Co_3O_4$ nanomaterials in lithium-ion batteries and gas sensors”, Adv. Funct. Mater., vol. 15, pp. 851-857, 2005. https://doi.org/10.1002/adfm.200400429
  22. E. Comini, G. Faglia, G. Sberveglieri, Z. Pan, and Z.L. Wang, “Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts”, Appl. Phys. Lett., vol. 81, pp. 1869-1871, 2002. https://doi.org/10.1063/1.1504867
  23. C.-Y. Lee, S.-J. Kim, I.-S. Hwang, and J.-H. Lee, “Glucose-mediated hydrothermal synthesis and gas sensing characteristics of $WO_3$ hollow microspheres”, Sens. & Actuators B, vol. 142, pp. 236-242, 2009. https://doi.org/10.1016/j.snb.2009.08.031
  24. J. Park, X. Shen, and G. Wang, “Solvothermal synthesis and gas-sensing performance of $Co_3O_4$ hollow nanospheres”, Sens. Actuators B, vol. 136, pp. 494-498, 2009. https://doi.org/10.1016/j.snb.2008.11.041
  25. H. Zhang, Q. Zhu, Y. Zhang, Y. Wang, L. Zhao, and B. Yu, “One-pot synthesis and hierarchical assembly of hollow $Cu_2O$ microspheres with nanocrystals-composed porous multishell and their gas-sensing properties”, Adv. Funct. Mater., vol. 17, pp. 2766-2771, 2007. https://doi.org/10.1002/adfm.200601146
  26. H. X. Yang, J. F. Qian, Z. X. Chen, X. P. Ai, and Y. L. Cao, “Multilayered nanocrystalline $SnO_2$ hollow microspheres synthesized by chemically induced selfassembly in the hydrothermal environment”, J. Phys. Chem. C, vol. 111, pp. 14067-14071, 2007. https://doi.org/10.1021/jp074159a
  27. Q. Zhao, Y. Gao, X. Bai, C. Wu, and Y. Xie, “Facile synthesis of $SnO_2$ hollow nanospheres and applications in gas sensors and electrocatalysts”, Eur. J. Inorg. Chem., vol. 2006, pp. 1643-1648, 2006.
  28. H.-R. Kim, K.-I. Choi, J.-H. Lee, and S.A. Akbar, “Highly sensitive and ultra-fast responding gas sensors using self-assembled hierarchical $SnO_2$ spheres”, Sens. Actuators B, vol. 136, pp. 138-143, 2009. https://doi.org/10.1016/j.snb.2008.11.016
  29. Y. S. Ding, X. F. Shen, S. Gomez, H. Luo, M. Aindow, and S. L. Suib, “Hydrothermal growth of manganese dioxide into three-dimensional hierarchical nanostructures” Adv. Funct. Mater., vol. 16, pp. 549-555, 2006. https://doi.org/10.1002/adfm.200500436
  30. P. Jiang, J. J. Zhou, H. F. Fang, C. Y. Wang, Z. L. Wang, and S.S. Xie, "Hierarchical shelled ZnO structures made of bunched nanowire arrays" Adv. Funct. Mater., vol. 17, pp. 1303-1303, 2007. https://doi.org/10.1002/adfm.200600390
  31. Y. Baek, Y. Song, and K. Yong, “A novel heteronanostructure system: hierarchical W nanothorn arrays on $WO_3$ nanowhiskers” Adv. Funct. Mater., vol. 18, pp. 3105-3110, 2006. https://doi.org/10.1002/adma.200601021
  32. U.-S. Choi, G. Sakai, K. Shimanoe, and N. Yamazoe, “Sensing properties of Au-loaded $SnO_2-Co_3O_4$ composites to CO and $H_2$”, Sens. Actuators B, vol. 107, pp. 397-401, 2005. https://doi.org/10.1016/j.snb.2004.10.033
  33. W. J. Moon, J. H. Yu, and G. M. Choi, “The CO and $H_2$ gas selectivity of CuO-doped $SnO_2$-ZnO composite gas sensor”, Sens. Actuators B, vol. 87, pp. 464-470, 2002. https://doi.org/10.1016/S0925-4005(02)00299-X
  34. K.-I. Choi, H.-R. Kim, and J.-H. Lee, “Enhanced CO sensing characteristics of hierarchical and hollow $In_2O_3$ microspheres”, Sens. Actuators B, vol. 138, pp. 497-503, 2009. https://doi.org/10.1016/j.snb.2009.02.016
  35. V. P. Santos, M. F. R. Pereira, J. J. M. Orfao, and J. L. Figueiredo, “The role of lattice oxygen on the activity of manganese oxides towards the oxidation of volatile organic compounds”, Applied Catalysis B: Environmental, vol. 99, pp. 353-363, 2010. https://doi.org/10.1016/j.apcatb.2010.07.007