DOI QR코드

DOI QR Code

Efficient Rotation-Invariant Boundary Image Matching Using the Envelope-based Lower Bound

엔빌로프 기반 하한을 사용한 효율적인 회전-불변 윤곽선 이미지 매칭

  • 김상필 (강원대학교 컴퓨터과학과) ;
  • 문양세 (강원대학교 컴퓨터과학과) ;
  • 홍선경 (강원대학교 컴퓨터과학과)
  • Received : 2010.10.15
  • Accepted : 2010.11.23
  • Published : 2011.02.28

Abstract

In this paper we present an efficient solution to rotation?invariant boundary image matching. Computing the rotation-invariant distance between image time-series is a time-consuming process since it requires a lot of Euclidean distance computations for all possible rotations. In this paper we propose a novel solution that significantly reduces the number of distance computations using the envelope-based lower bound. To this end, we first present how to construct a single envelope from a query sequence and how to obtain a lower bound of the rotation-invariant distance using the envelope. We then show that the single envelope-based lower bound can reduce a number of distance computations. This approach, however, may cause bad performance since it may incur a larger lower bound by considering all possible rotated sequences in a single envelope. To solve this problem, we present a concept of rotation interval, and using the rotation interval we generalize the envelope-based lower bound by exploiting multiple envelopes rather than a single envelope. We also propose equi-width and envelope minimization divisions as the method of determining rotation intervals in the multiple envelope approach. Experimental results show that our envelope-based solutions outperform existing solutions by one or two orders of magnitude.

본 논문에서는 윤곽선 이미지 매칭에서 회전-불변 거리 계산의 효율적 방법을 제안한다. 회전-불변 거리 계산은 이미지 시계열을 한 칸씩 회전하면서 매번 유클리디안 거리를 계산해야 하는 고비용의 연산이다. 본 논문에서는 엔빌로프 기반 하한을 사용하여 회전-불변 거리 계산을 크게 줄이는 획기적인 해결책을 제시한다. 이를 위해, 먼저 질의 시퀀스 대상의 단일 엔빌로프 작성과 이의 하한 개념을 제시하고, 이를 회전-불변 거리 계산에 사용하면 많은 수의 회전-불변 거리 계산을 줄일 수 있음을 보인다. 그런데, 단일 엔빌로프 기법은 하나의 엔빌로프가 가능한 모든 회전 시퀀스를 포함하기 때문에 하한이 커지고, 이에 따라 매칭 성능이 저하되는 문제점이 있다. 이러한 문제점을 해결하기 위하여, 본 논문에서는 회전 구간의 개념을 도입하여 단일 엔빌로프 기반 하한을 다중 엔빌로프 기반 하한 개념으로 확장한다. 또한, 다중 엔빌로프 기법에서 회전 구간을 결정하기 위한 방법으로 동일-너비 기법과 엔빌로프 최소화 기법을 제안한다. 실험 결과, 제안한 엔빌로프 기반 매칭 기법은 기존 기법에 비해 최대 수 배에서 수십 배까지 매칭 성능을 향상시킨 것으로 나타났다.

Keywords

References

  1. Agrawal, R., Faloutsos, C., and Swami, A., “Efficient Similarity Search in Sequence Databases,” In Proc. the 4th Int'l Conf. on Foundations of Data Organization and Algorithms, Chicago, Illinois, pp. 69-84, Oct. 1993. https://doi.org/10.1007/3-540-57301-1_5
  2. Faloutsos, C., Ranganathan, M., and Manolopoulos, Y., “Fast Subsequence Matching in Time Series Databases,” In Proc. Int'l Conf. on Management of Data, ACM SIGMOD, Minneapolis, Minnesota, pp. 419-429, May 1994. https://doi.org/10.1145/191839.191925
  3. Keogh, E., “Exact Indexing of Dynamic Time Warping,” In Proc. the 28th Int'l Conf. on Very Large Data Bases, Hong Kong, pp. 406-417, Aug. 2002.
  4. Moon, Y.-S., Whang, K.-Y., and Han, W.-S., “General Match: A Subsequence Matching Method in Time Series Databases Based on Generalized Windows,” In Proc. Int'l Conf. on Management of Data, ACM SIGMOD, Madison, Wisconsin, pp. 382-393, June 2002.
  5. Loh, W.-K., Park, Y.-H., and Yoon, Y.-I., “Fast Recognition of Asian Characters Based on Database Methodologies,” In Proc. the 24th British Nat'l Conf. on Databases, Glasgow, UK, pp. 37-48, July 2007.
  6. Vlachos, M., Vagena, Z., Yu, P. S., and Athitsos, V., “Rotation Invariant Indexing of Shapes and Line Drawings,” In Proc. of ACM Conf. on Information and Knowledge Management, Bremen, Germany, pp. 131-138, Oct. 2005. https://doi.org/10.1145/1099554.1099580
  7. Kim, B.-S., Moon, Y.-S., and Kim, J., “Noise Control Boundary Image Matching Using Time-Series Moving Average Transform,” In Proc. of the 19th Int'l Conf. on Database and Expert Systems Applications (DEXA 2008), Turin, Italy, Sept. 2008 https://doi.org/10.1007/978-3-540-85654-2_34
  8. Lee, A. J. T. et al., “A Novel Filtration Method in Biological Sequence Databases,” Pattern Recognition Letters, Vol. 28, Issue 4, pp. 447-458, Mar. 2007. https://doi.org/10.1016/j.patrec.2006.08.015
  9. Keogh, E. J., Wei, L., Xi, X., Vlachos, M., Lee, S.-H., and Protopapas, P., “Supporting Exact Indexing of Arbitrarily Rotated Shapes and Periodic Time Series under Euclidean and Warping Distance Measures,” The VLDB Journal, Vol. 18, No. 3, pp. 611-630, June 2009. https://doi.org/10.1007/s00778-008-0111-4
  10. Han, W.-S., Lee, J., Moon, Y.-S., and Jiang, H., “Ranked Subsequence Matching in Time-Series Databases,” In Proc. the 33rd Int'l Conf. on Very Large Data Bases, Vienna, Austria, pp. 423-434, Sept. 2007.
  11. Chan, K.-P., Fu, A. W.-C., and Yu, C. T., “Haar Wavelets for Efficient Similarity Search of Time-Series: With and Without Time Warping,” IEEE Trans. on Knowledge and Data Engineering, Vol. 15, No. 3, pp. 686-705, Jan./Feb. 2003. https://doi.org/10.1109/TKDE.2003.1198399
  12. Gonzalez, R. C. and Woods, R. E., Digital Image Processing, 2nd Ed., Prentice Hall, New Jersey, 2002.
  13. Pratt, W. K., Digital Image Processing, 4th Ed., Eastman Kodak Company, Rochester, New York, 2007.
  14. Theoharatos, C., “A Generic Scheme for Color Image Retrieval Based on the Multivariate Wald-Wolfowitz Test,” IEEE Trans. on Knowledge and Data Engineering, Vol. 17, No. 6, pp. 808-819, June 2005. https://doi.org/10.1109/TKDE.2005.85
  15. Do, M. N., “Wavelet-Based Texture Retrieval Using Generalized Gaussian Density and Kullback–Leibler Distance,” IEEE Trans. on Image Processing, Vol. 11, No. 2, Feb. 2002. https://doi.org/10.1109/83.982822
  16. Wang, Z., Chi, Z., Feng, D., and Wang, Q., “Leaf Image Retrieval with Shape Features,” In Proc. 4th Int'l Conf. on Advances in Visual Information Systems, Lyon, France, pp. 477-487, Nov. 2000.
  17. Zhang, D. Z. and Lu, G., “Review of Shape Representation and Description Techniques,” Pattern Recognition, Vol. 37, No. 1, pp. 1-19, July 2003. https://doi.org/10.1016/j.patcog.2003.07.008
  18. Chen, y.-W. and Lee, S. C.,”The C-Chain Code – A New Method For Coding 3D Curves,” In Proc. The 25th Asilomar Conf. on Signals, Systems and Computers, Vol.1, pp.472-476, Nov.1991. https://doi.org/10.1109/ACSSC.1991.186494
  19. Grosky, W. I., and Mehrotra, R., “Index-Based Object Recognition in Pictorial Data Management,” Computer Vision, Graphics, and Image Processing, Vol. 52, Issue3, pp.416-436, Dec.1990. https://doi.org/10.1016/0734-189X(90)90085-A
  20. Bebis, G., Papadourakis, G., Orphanoudakis, S., “Curvature Scale space driven Object Recognition with an Indexing Scheme Based on Artificial Neural Networks,” Pattern Recognition, Vol.32, No.7, pp.1175-1201, July 1999. https://doi.org/10.1016/S0031-3203(98)00159-9
  21. SQUID: http://www.ee.surrey.ac.uk/CVSSP/demos/css/demo.html