DOI QR코드

DOI QR Code

Characterization of the Surface Contribution to Fluorescence Correlation Spectroscopy Measurements

  • Chowdhury, Salina A. (Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University) ;
  • Lim, Man-Ho (Department of Chemistry and Chemistry Institute of Functional Materials, Pusan National University)
  • Received : 2010.11.25
  • Accepted : 2010.12.07
  • Published : 2011.02.20

Abstract

Fluorescence correlation spectroscopy (FCS) is a sophisticated and an accurate analytical technique used to study the diffusion of molecules in a solution at the single-molecule level. FCS is strongly affected by many factors such as the stability of the excitation power, photochemical processes, mismatch between the refractive indices, and variations in the cover glass thickness. We have studied FCS near the surface of a cover glass by using rhodamine 123 as a fluorescent probe and have observed that the surface has a strong influence on the measurements. The temporal autocorrelation of FCS decays with two characteristic times when the confocal detection volume is positioned near the surface of the cover glass. As the position of the detection volume is moved away from the surface, the FCS autocorrelation becomes one-component decaying; the characteristic time of the decay is the same as the faster-decaying component in the FCS autocorrelation near the surface. This observation suggests that the faster component can be attributed to the free diffusion of the probe molecules in the solution, while the slow component has its origin from the interaction between the probe molecules and the surface. We have characterized the surface contribution to the FCS measurements near the surface by changing the position of the detection volume relative to the surface. The influence of the surface on the diffusion of the probe molecules was monitored by changing the chemical properties of the surface. The surface contribution to the temporal autocorrelation of the FCS strongly depends on the chemical nature of the surface. The hydrophobicity of the surface is a major factor determining the surface influence on the free diffusion of the probe molecules near the surface.

Keywords

References

  1. Korlach, J.; Schwille, P.; Webb, W. W.; Feigenson, G. W. Proc. Natl. Acad. Sci. USA 1999, 96, 8461. https://doi.org/10.1073/pnas.96.15.8461
  2. Yoshida, N.; Kinjo, M.; Tamura, M. Biochem. Biophys. Res. Comm. 2001, 280, 312. https://doi.org/10.1006/bbrc.2000.4115
  3. Lead, J. R.; Wilkinson, K. J.; Starchev, K.; Canonica, S.; Buffle, J. Environ. Sci. Technol. 2000, 34, 1365. https://doi.org/10.1021/es9907616
  4. Mahurin, S. M.; Dai, S.; Barnes, M. D. J. Phys. Chem. B 2003, 107, 13336. https://doi.org/10.1021/jp036033t
  5. Benda, A.; Benes, M.; Marecek, V.; Lhotsky, A.; Hermens, W. T.; Hof, M. Langmuir 2003, 19, 4120. https://doi.org/10.1021/la0270136
  6. Guo, L.; Chowdhury, P.; Fang, J.; Gai, F. J. Phys. Chem. B 2007, 111, 14244. https://doi.org/10.1021/jp076562n
  7. Dertinger, T.; Pacheco, V.; Hocht, I. v. d.; Hartmann, R.; Gregor, I.; Enderlein, J. ChemPhysChem 2007, 8, 433. https://doi.org/10.1002/cphc.200600638
  8. Widengren, J.; Schwille, P. J. Phys. Chem. A 2000, 104, 6416. https://doi.org/10.1021/jp000059s
  9. Mei, E.; Tang, J.; Vanderkooi, J. M.; Hochstrasser, R. M. J. Am. Chem. Soc. 2003, 125, 2730. https://doi.org/10.1021/ja021197t
  10. Xiao, Y.; Buschmann, V.; Weston, K. D. Anal. Chem. 2005, 77, 36. https://doi.org/10.1021/ac049010z
  11. Xie, X. S.; Choi, P. J.; Li, G.-W.; Lee, N. K.; Lia, G. Annu. Rev. Biophys. 2008, 37, 417. https://doi.org/10.1146/annurev.biophys.37.092607.174640
  12. Min, W.; English, B. P.; Luo, G.; Cherayil, B. J.; Kou, S. C.; Xie, X. S. Acc. Chem. Res. 2005, 38, 923. https://doi.org/10.1021/ar040133f
  13. Eggeling, C.; Volkmer, A.; Seidel, C. A. M. ChemPhysChem 2005, 6, 791. https://doi.org/10.1002/cphc.200400509
  14. Rigler, R.; Widengren, J. Bioscience 1990, 3, 180.
  15. Enderlein, J.; Gregor, I.; Patra, D.; Dertinger, T.; Kaupp, U. B. ChemPhysChem 2005, 6, 2324. https://doi.org/10.1002/cphc.200500414
  16. Thompson, N. L. Fluorescence Correlation Spectroscope. Topics in Fluorescence Spectroscopy Techniques; Plenum Press: New York, 1991; Vol. 1.
  17. Lamb, D. C.; Schenk, A.; Rocker, C.; Scalfi-Happ, C.; Nienhaus, G. U. Biophys. J. 2000, 79, 1129. https://doi.org/10.1016/S0006-3495(00)76366-1
  18. Magde, D.; Elson, E. L.; Webb, W. W. Biopolymers 1974, 13, 29. https://doi.org/10.1002/bip.1974.360130103
  19. Magde, D.; Elson, E. L.; Webb, W. W. Phys. Rev. Lett. 1972, 29, 705. https://doi.org/10.1103/PhysRevLett.29.705
  20. Widengren, J.; Mets, U.; Rigler, R. J. Phys. Chem. 1995, 99, 13368. https://doi.org/10.1021/j100036a009
  21. Widengren, J.; Rigler, R.; Mets, U. J. Fluoresc. 1994, 4, 255. https://doi.org/10.1007/BF01878460
  22. Bonnet, G.; Krichevsky, O.; Libchaber, A. Proc. Natl. Acad. Sci. USA 1998, 95, 8602. https://doi.org/10.1073/pnas.95.15.8602
  23. Haupts, U.; Maiti, S.; Schwille, P.; Webb, W. W. Proc. Natl. Acad. Sci. USA 1988, 95, 13573.
  24. Bismuto, E.; Gratton, E.; Lamb, D. C. Biophys. J. 2001, 81, 3510. https://doi.org/10.1016/S0006-3495(01)75982-6
  25. Gao, F.; Mei, E.; Lim, M.; Hochstrasser, R. M. J. Am. Chem. Soc. 2006, 128, 4814. https://doi.org/10.1021/ja058098a
  26. Hess, S. T.; Webb, W. W. Biophys. J. 2002, 83, 2300. https://doi.org/10.1016/S0006-3495(02)73990-8
  27. Nishimura, G.; Kinjo, M. Anal. Chem. 2004, 76, 1963. https://doi.org/10.1021/ac034690b
  28. Meng, F.; Chen, B.; Liu, G.; Ding, J.; Ma, H. Science in China Ser. G: Physics, Mechanics & Astronomy 2005, 48, 336. https://doi.org/10.1360/04yw0086
  29. Boutin, C.; Jaffiol, R.; Plain, J.; Royer, P. J. Fluoresc. 2008, 18, 1115. https://doi.org/10.1007/s10895-008-0361-y
  30. Ferguson, M. W.; Beaumont, P. C.; Jones, S. E.; Navaratnam, S.; Parsons, B. J. Phys. Chem. Chem. Phys 1999, 1, 261. https://doi.org/10.1039/a807013j
  31. Widengren, J.; Dapprich, J.; Rigler, R. Chem. Phys. 1997, 216, 417. https://doi.org/10.1016/S0301-0104(97)00014-1
  32. Krichevsky, O.; Bonnet, G. Rep. Prog. Phys 2002, 65, 251. https://doi.org/10.1088/0034-4885/65/2/203
  33. Rigler, R.; Mets, U.; Widengren, J.; Kask, P. Eur. Biophys. J. 1993, 22, 169.
  34. Boutin, C.; Jaffiol, R.; Plain, J.; Royer, P. Influence of the surface hydrophobicity on Fluorescence Correlation Spectroscopy measurements; Ultrasensitive and Single-Molecule Detection Technologies II, 2007.
  35. Bohmer, M.; Pampaloni, F.; Wahl, M.; Rahn, H.-J.; Erdmann, R.; Enderlein, J. Rev. Sci. Instrum. 2001, 72, 4145. https://doi.org/10.1063/1.1406926
  36. Bohmer, M.; Wahl, M.; Rahn, H.-J.; Erdmann, R.; Enderlein, J. Chem. Phys. Lett. 2002, 353, 439. https://doi.org/10.1016/S0009-2614(02)00044-1
  37. Bohmer, M.; Enderlein, J. ChemPhysChem 2003, 4, 792. https://doi.org/10.1002/cphc.200200565
  38. Chrisey, L. A.; Lee, G. U.; O'Ferrall, C. E. Nuc. Acids Res. 1996, 24, 3031. https://doi.org/10.1093/nar/24.15.3031
  39. Wayment, J. R.; Harris, J. M. Anal. Chem. 2009, 81, 336. https://doi.org/10.1021/ac801818t
  40. DelaCruz, J. L.; Blanchard, G. J. J. Phys. Chem. B 2003, 107, 7102. https://doi.org/10.1021/jp034163w
  41. Dare-Doyen, S.; Doizi, D.; Guilbaud, P.; Djedaini-Pilard, F.; Perly, B.; Millie, P. J. Phys. Chem. B 2003, 107, 13803. https://doi.org/10.1021/jp034845j
  42. Ito, S.; Toitani, N.; Pan, L.; Tamai, N.; Miyasaka, H. J. Phys.: Condens. Matter 2007, 19, 486208. https://doi.org/10.1088/0953-8984/19/48/486208
  43. Masuda, A.; Ushida, K.; Okamoto, T. Biophys. J. 2005, 88, 3584. https://doi.org/10.1529/biophysj.104.048009
  44. Schuster, J.; Cichos, F.; Wrachtrup, J.; Borczyskowski, V. C. Sing. Mol. 2000, 1, 299. https://doi.org/10.1002/1438-5171(200012)1:4<299::AID-SIMO299>3.0.CO;2-K
  45. Evans, N. D.; Gnudi, L.; Rolinski, O. J.; Birch, D. J. S.; Pickup, J. C. J. Photochem. Photobiol. B: Biol. 2005, 80, 122. https://doi.org/10.1016/j.jphotobiol.2005.04.001

Cited by

  1. Specific Binding of Nile Red to Apomyoglobin vol.55, pp.5, 2011, https://doi.org/10.5012/jkcs.2011.55.5.746
  2. Microheterogeneity of Some Imidazolium Ionic Liquids As Revealed by Fluorescence Correlation Spectroscopy and Lifetime Studies vol.116, pp.40, 2012, https://doi.org/10.1021/jp3061202