References
- Rydh, C. J. Power Sources 1999, 80, 21. https://doi.org/10.1016/S0378-7753(98)00249-3
- Radford, G.; Cox, J.; Wills, R.; Walsh, E. J. Power Sources 2008, 185, 1504.
- Qian, P.; Zhang, H.; Chen, J.; Wen, Y.; Luo, Q.; Liu, Z.; You, D.; Yi, B. J. Power Sources 2008, 175, 613. https://doi.org/10.1016/j.jpowsour.2007.09.006
- Oriji, G.; Katayama, Y.; Miura, T. Electrochimica Acta 2004, 49, 3091. https://doi.org/10.1016/j.electacta.2004.02.020
- Xue, F.; Wang, Y.; Wang, W.; Wang, X. Electrochimica Acta 2008, 53, 6636. https://doi.org/10.1016/j.electacta.2008.04.040
- Huang, K.; Li, X.; Liu, S.; Tan, N.; Chen, L. Renewable Energy 2008, 33, 186. https://doi.org/10.1016/j.renene.2007.05.025
- Vafiadis, H.; Kazacos, M. J. Membrane Science 2006, 279, 394. https://doi.org/10.1016/j.memsci.2005.12.028
- Chakrabati, M.; Dryfe, R.; Roberts, E. Electrochimica Acta 2007, 52, 2189. https://doi.org/10.1016/j.electacta.2006.08.052
- Rahman, F.; Kazacos, M. J. Power Sources 2009, 189, 1212. https://doi.org/10.1016/j.jpowsour.2008.12.113
- Zhu, H.; Zhang, Y.; Yue, L.; Li, W.; Li, G.; Shu, D.; Chen, H. J. Power Sources 2008, 184, 637. https://doi.org/10.1016/j.jpowsour.2008.04.016
- Xhou, H.; Zhang, H.; Zhao, P.; Yi, B. Electrochimica Acta 2006, 51, 6304. https://doi.org/10.1016/j.electacta.2006.03.106
- Sun, B.; Kazacos, M. Electrochimica Acta 1991, 36, 513. https://doi.org/10.1016/0013-4686(91)85135-T
- Sun, B.; Kazacos, M. Electrochimica Acta 1992, 37, 2459. https://doi.org/10.1016/0013-4686(92)87084-D
- Sun, B.; Kazacos, M. Electrochimica Acta 1992, 37, 1253. https://doi.org/10.1016/0013-4686(92)85064-R
- Wang, W.; Wang, X. Electrochimica Acta 2007, 52, 6755. https://doi.org/10.1016/j.electacta.2007.04.121
- Conway, B.; Jerkiewicz, G. Solid State Ionics 2002, 150, 93. https://doi.org/10.1016/S0167-2738(02)00266-7
- Kim, H. J. Korean Electrochemical Society 2010, 13, 123. https://doi.org/10.5229/JKES.2010.13.2.123
- Kaneko, H.; Nozaki, K.; Aoki, T.; Negishi, A.; Kamimoto, M. Electrochimica Acta 1991, 36, 1191. https://doi.org/10.1016/0013-4686(91)85108-J
Cited by
- Influence of Cr3+ concentration on the electrochemical behavior of the anolyte for vanadium redox flow batteries vol.57, pp.32, 2012, https://doi.org/10.1007/s11434-012-5302-0
- Poly(vinylbenzyl chloride-glycidyl methacrylate)/Polyethylene Composite Anion Exchange Membranes for Vanadium Redox Battery Application vol.34, pp.6, 2013, https://doi.org/10.5012/bkcs.2013.34.6.1651
- Vanadium Flow Battery for Energy Storage: Prospects and Challenges vol.4, pp.8, 2013, https://doi.org/10.1021/jz4001032
- Electrochemical Properties of Carbon Felt Electrode for Vanadium Redox Flow Batteries by Liquid Ammonia Treatment vol.25, pp.3, 2014, https://doi.org/10.14478/ace.2014.1030
- A technology review of electrodes and reaction mechanisms in vanadium redox flow batteries vol.3, pp.33, 2015, https://doi.org/10.1039/C5TA02613J
- Supporting Material for Highly Reversible Zinc-Bromine Electrolytes vol.37, pp.3, 2016, https://doi.org/10.1002/bkcs.10669
- Treated carbon felt as electrode material in vanadium redox flow batteries: a study of the use of carbon nanotubes as electrocatalyst vol.21, pp.1, 2017, https://doi.org/10.1007/s10008-016-3336-y
- Electrode Modification for Better Kinetics in all Vanadium Redox Flow Battery (AVRFB): A Short Review vol.1116, pp.1662-8985, 2015, https://doi.org/10.4028/www.scientific.net/AMR.1116.229
- The Correlation Between Charge and Discharge Current for the Electrochemical Stability and Durability of Electrolyte in a Vanadium Redox Flow Battery vol.39, pp.9, 2018, https://doi.org/10.1002/bkcs.11546
- Cyclic voltammetric preparation of graphene-coated electrodes for positive electrode materials of vanadium redox flow battery vol.24, pp.11, 2018, https://doi.org/10.1007/s11581-018-2547-x
- Vanadium redox flow batteries: a technology review vol.39, pp.7, 2011, https://doi.org/10.1002/er.3260
- A novel vanadium/cobalt redox couple in aqueous acidic solution for redox flow batteries vol.44, pp.1, 2011, https://doi.org/10.1002/er.4938
- Titanium as a Substrate for Three‐Dimensional Hybrid Electrodes for Vanadium Redox Flow Battery Applications vol.7, pp.3, 2011, https://doi.org/10.1002/celc.201901896