DOI QR코드

DOI QR Code

Electrochemical Properties of Graphite-based Electrodes for Redox Flow Batteries

  • Kim, Hyung-Sun (Advanced Battery Center, Korea Institute of Science and Technology (KIST))
  • Received : 2010.08.26
  • Accepted : 2010.12.07
  • Published : 2011.02.20

Abstract

Graphite-based electrodes were prepared using synthetic graphite (MCMB 1028) or natural graphite (NG) powder using a dimensionally stable anode (DSA) as a substrate. Their electrochemical properties were investigated in vanadiumbased electrolytes to determine how to increase the durability and improve the energy efficiency of redox flow batteries. Cyclic voltammetry (CV) was performed in the voltage range of -0.7 V to 1.6 V vs. SCE at various scan rates to analyze the vanadium redox reaction. The graphite-based electrodes showed a fast redox reaction and good reversibility in a highly concentrated acidic electrolyte. The increased electrochemical activity of the NG-based electrode for the $V^{4+}/V^{5+}$ redox reaction can be attributed to the increased surface concentration of functional groups from the addition of conductive material that served as a catalyst. Therefore, it is expected that this electrode can be used to increase the power density and energy density of redox flow batteries.

Keywords

References

  1. Rydh, C. J. Power Sources 1999, 80, 21. https://doi.org/10.1016/S0378-7753(98)00249-3
  2. Radford, G.; Cox, J.; Wills, R.; Walsh, E. J. Power Sources 2008, 185, 1504.
  3. Qian, P.; Zhang, H.; Chen, J.; Wen, Y.; Luo, Q.; Liu, Z.; You, D.; Yi, B. J. Power Sources 2008, 175, 613. https://doi.org/10.1016/j.jpowsour.2007.09.006
  4. Oriji, G.; Katayama, Y.; Miura, T. Electrochimica Acta 2004, 49, 3091. https://doi.org/10.1016/j.electacta.2004.02.020
  5. Xue, F.; Wang, Y.; Wang, W.; Wang, X. Electrochimica Acta 2008, 53, 6636. https://doi.org/10.1016/j.electacta.2008.04.040
  6. Huang, K.; Li, X.; Liu, S.; Tan, N.; Chen, L. Renewable Energy 2008, 33, 186. https://doi.org/10.1016/j.renene.2007.05.025
  7. Vafiadis, H.; Kazacos, M. J. Membrane Science 2006, 279, 394. https://doi.org/10.1016/j.memsci.2005.12.028
  8. Chakrabati, M.; Dryfe, R.; Roberts, E. Electrochimica Acta 2007, 52, 2189. https://doi.org/10.1016/j.electacta.2006.08.052
  9. Rahman, F.; Kazacos, M. J. Power Sources 2009, 189, 1212. https://doi.org/10.1016/j.jpowsour.2008.12.113
  10. Zhu, H.; Zhang, Y.; Yue, L.; Li, W.; Li, G.; Shu, D.; Chen, H. J. Power Sources 2008, 184, 637. https://doi.org/10.1016/j.jpowsour.2008.04.016
  11. Xhou, H.; Zhang, H.; Zhao, P.; Yi, B. Electrochimica Acta 2006, 51, 6304. https://doi.org/10.1016/j.electacta.2006.03.106
  12. Sun, B.; Kazacos, M. Electrochimica Acta 1991, 36, 513. https://doi.org/10.1016/0013-4686(91)85135-T
  13. Sun, B.; Kazacos, M. Electrochimica Acta 1992, 37, 2459. https://doi.org/10.1016/0013-4686(92)87084-D
  14. Sun, B.; Kazacos, M. Electrochimica Acta 1992, 37, 1253. https://doi.org/10.1016/0013-4686(92)85064-R
  15. Wang, W.; Wang, X. Electrochimica Acta 2007, 52, 6755. https://doi.org/10.1016/j.electacta.2007.04.121
  16. Conway, B.; Jerkiewicz, G. Solid State Ionics 2002, 150, 93. https://doi.org/10.1016/S0167-2738(02)00266-7
  17. Kim, H. J. Korean Electrochemical Society 2010, 13, 123. https://doi.org/10.5229/JKES.2010.13.2.123
  18. Kaneko, H.; Nozaki, K.; Aoki, T.; Negishi, A.; Kamimoto, M. Electrochimica Acta 1991, 36, 1191. https://doi.org/10.1016/0013-4686(91)85108-J

Cited by

  1. Influence of Cr3+ concentration on the electrochemical behavior of the anolyte for vanadium redox flow batteries vol.57, pp.32, 2012, https://doi.org/10.1007/s11434-012-5302-0
  2. Poly(vinylbenzyl chloride-glycidyl methacrylate)/Polyethylene Composite Anion Exchange Membranes for Vanadium Redox Battery Application vol.34, pp.6, 2013, https://doi.org/10.5012/bkcs.2013.34.6.1651
  3. Vanadium Flow Battery for Energy Storage: Prospects and Challenges vol.4, pp.8, 2013, https://doi.org/10.1021/jz4001032
  4. Electrochemical Properties of Carbon Felt Electrode for Vanadium Redox Flow Batteries by Liquid Ammonia Treatment vol.25, pp.3, 2014, https://doi.org/10.14478/ace.2014.1030
  5. A technology review of electrodes and reaction mechanisms in vanadium redox flow batteries vol.3, pp.33, 2015, https://doi.org/10.1039/C5TA02613J
  6. Supporting Material for Highly Reversible Zinc-Bromine Electrolytes vol.37, pp.3, 2016, https://doi.org/10.1002/bkcs.10669
  7. Treated carbon felt as electrode material in vanadium redox flow batteries: a study of the use of carbon nanotubes as electrocatalyst vol.21, pp.1, 2017, https://doi.org/10.1007/s10008-016-3336-y
  8. Electrode Modification for Better Kinetics in all Vanadium Redox Flow Battery (AVRFB): A Short Review vol.1116, pp.1662-8985, 2015, https://doi.org/10.4028/www.scientific.net/AMR.1116.229
  9. The Correlation Between Charge and Discharge Current for the Electrochemical Stability and Durability of Electrolyte in a Vanadium Redox Flow Battery vol.39, pp.9, 2018, https://doi.org/10.1002/bkcs.11546
  10. Cyclic voltammetric preparation of graphene-coated electrodes for positive electrode materials of vanadium redox flow battery vol.24, pp.11, 2018, https://doi.org/10.1007/s11581-018-2547-x
  11. Vanadium redox flow batteries: a technology review vol.39, pp.7, 2011, https://doi.org/10.1002/er.3260
  12. A novel vanadium/cobalt redox couple in aqueous acidic solution for redox flow batteries vol.44, pp.1, 2011, https://doi.org/10.1002/er.4938
  13. Titanium as a Substrate for Three‐Dimensional Hybrid Electrodes for Vanadium Redox Flow Battery Applications vol.7, pp.3, 2011, https://doi.org/10.1002/celc.201901896