DOI QR코드

DOI QR Code

Observation of Asymmetry amongst Nucleotide Binding Sites of F1-ATPase of Escherichia coli by 31P NMR Spectroscopy

  • Jun, Nam-Kung (Department of Biochemistry and Institute of Basic Medical Science, Yonsei University Wonju College of Medicine) ;
  • Sohn, Joon-Hyung (Department of Biochemistry and Institute of Basic Medical Science, Yonsei University Wonju College of Medicine) ;
  • Yeh, Byung-Il (Department of Biochemistry and Institute of Basic Medical Science, Yonsei University Wonju College of Medicine) ;
  • Choi, Jong-Whan (Department of Biochemistry and Institute of Basic Medical Science, Yonsei University Wonju College of Medicine) ;
  • Kim, Hyun-Won (Department of Biochemistry and Institute of Basic Medical Science, Yonsei University Wonju College of Medicine)
  • Received : 2010.11.01
  • Accepted : 2010.12.06
  • Published : 2011.02.20

Abstract

It was regarded that the $^{31}P$ resonances of inherent nucleotides in $F_1$-ATPase (EF1), as large as 380KDa, could not be observed by $^{31}P$ NMR spectroscopy. However, our $^{31}P$ NMR spectroscopy could differentiate between different nucleotide binding sites on EF1 from Escherichia coli. When EF1 was prepared in the absence of $Mg^{2+}$, EF1 contained only ADP. Multiple $^{31}P$ resonances from $\beta$-phosphates of ADP bound to the EF1 were observed from the enzyme prepared without $Mg^{2+}$, suggesting asymmetry or flexibility amongst nucleotide binding sites. $^{31}P$ resonances from enzyme bound ATP could be observed only from EF1, when the enzyme was prepared in the presence of $Mg^{2+}$. This $Mg^{2+}$ dependent ATP binding was very tight that, once bound, nucleotide could not be removed even after removal of $Mg^{2+}$. $^{31}P$ NMR proved to be a valuable tool for investigating phosphorous related enzymes.

Keywords

References

  1. Senior, A. E.; Wise, J. G. J. Membr. Biol. 1983, 73, 105-124. https://doi.org/10.1007/BF01870434
  2. Senior, A. E. Physiol. Revs. 1988, 68, 177-231.
  3. Futai, M.; Noumi, T.; Maeda, M. Ann. Rev. Biochem. 1989, 8, 111-136.
  4. Penefsky, H. S.; Cross, R. Adv. Enzymol. 1991, 64, 173-213.
  5. Cross, R. L.; Nalin, C. M. J. Biol. Chem. 1982, 257, 2874-2881.
  6. Senior, A. E. J. Bioenerg. Biomembr. 1992, 24, 479-484. https://doi.org/10.1007/BF00762365
  7. Boyer, P. D. Biochim. Biophys. Acta 1993, 1140, 215-250. https://doi.org/10.1016/0005-2728(93)90063-L
  8. Abrahams, J. P.; Leslie, A. G. W.; Lutter, R.; Walker, J. E. Nature 1994, 370, 621-628. https://doi.org/10.1038/370621a0
  9. Perlin, D. S.; Latchney, L. R.; Wise, J. G.; Senior, A. E. Biochemistry 1984, 23, 4998-5003. https://doi.org/10.1021/bi00316a026
  10. Wise, J. G.; Duncan, T. M.; Latchney, L. R.; Cox, D. N.; Senior, A. E. Biochemical. J. 1983, 214, 343-350.
  11. Carr, M.; Mulvery, D.; Willis, A.; Ferguson, S. J.; Campbell, I. D. Biochim. Biophys. Acta 1990, 1015, 79-86. https://doi.org/10.1016/0005-2728(90)90218-S
  12. Jung, S.; Kim, H. W. J. Biochem. Mol. Biol. 1998, 31, 33-47.
  13. Yoon, J.; Sohn, J. H.; Lee, H-W.; Yeh, B-I.; Choi, J-W.; Jung, S.; Kim, H.-W. Bull. Korean Chem. Soc. 2001, 22, 90-92.
  14. Choi, J-W.; Lee, Y. B.; Sohn, J. H.; Jun, N.; Yeh, B-I.; Kim, H.-W. 2001, 22, 90-92.
  15. Kim, H.-W.; Perez, J. A.; Ferguson, S. J.; Campbell, E. D. FEBS Lett. 1990, 272, 34-36. https://doi.org/10.1016/0014-5793(90)80442-L
  16. Lee, H. W.; Sohn, J. H.; Yeh, B. I.; Choi, J. W.; Kim, H. W. J. Biochem. 1998, 127, 1053-1056.
  17. Ting, L. P.; Wang, J. J. Biochemistry 1980, 19, 5665-5670. https://doi.org/10.1021/bi00566a001
  18. Bradford, M. M. Anal. Biochem. 1994, 72, 248-254.
  19. Garett, N. E.; Penefsky, H. S. J. Biol. Chem. 1975, 256, 6640-6647.
  20. Rosch, P. 1986 Prog. NMR Spectroscopy 1986, 18, 123-169. https://doi.org/10.1016/0079-6565(86)80006-1
  21. Nageswara, B. D. In Phosphorous-31 NMR; Principles and Applications; Gerenstein, D.G., Ed.; Academic Press: New York, USA, 1984; pp 57-61.
  22. Moudrianakis, E. N.; Tiffert, M. A. J. Biol. Chem. 1976, 25124, 7796-801
  23. Lunardi, J.; Vignais, P. V. Biochim. Biophys. Acta 1982, 6821, 124-134.
  24. Wise, J. G.; Latchney, L. R.; Senir, A. E. J. Biol. Chem. 1981, 256, 10383-10389.
  25. Hanada, H.; Noumi, T.; Maeda, M.; Futai, M. FEBS Lett. 1989, 2, 465-467.
  26. Hackney, D. D. Biochem, Biophys. Res. Commun. 1979, 91, 233-238. https://doi.org/10.1016/0006-291X(79)90608-9
  27. Drobinskaya, I. Y.; Kzlov, I. A.; Mirataliev, M. B.; Vulfosn, E. N. FEBS Lett. 1985, 25, 419-424.
  28. Yoshida, M.; Allison, W. S. J. Biol. Chem. 1986, 261, 5714-5721.
  29. Kironde, F. A. S.; Cross, R. L. J. Biol. Chem. 1987, 262, 3488-3495.

Cited by

  1. Conformational Changes of Nucleotide Binding Sites Following Sequential Addition of ADP to Nucleotide-depleted F1-ATPase of Escherichia coli Investigated with 31P NMR Spectroscop vol.32, pp.3, 2011, https://doi.org/10.5012/bkcs.2011.32.3.1051
  2. Catalytic Sites of F1-ATPase from Escherichia coli was Investigated with GTP and GDP Titration Using 31P NMR Spectroscopy vol.33, pp.7, 2012, https://doi.org/10.5012/bkcs.2012.33.7.2419