DOI QR코드

DOI QR Code

Analysis of Spin Exchange Interactions in (C2N2H10)[Fe(HPO3)F3] on the Basis of Electronic Structure Calculations

  • Koo, Hyun-Joo (Department of Chemistry and Research Institute for Basic Sciences, Kyung Hee University)
  • Received : 2010.10.28
  • Accepted : 2010.11.29
  • Published : 2011.02.20

Abstract

Spin exchange interactions of $(C_2N_2H_{10})[Fe(HPO_3)F_3]$ were examined by performing a spin dimer analysis based on extended Huckel tight binding method and a mapping analysis based on first principles density functional theory. Spin exchange interactions occur through the super-superexchange paths $J_1$ and $J_2$ in $(C_2N_2H_{10})[Fe(HPO_3)F_3]$. In the super-superexchange path $J_2$ magnetic orbital interactions between eg-block levels are much stronger than those from $t_{2g}$-block levels. Both electronic structure calculations show that the spin exchange interaction through the super-superexchange path $J_2$ is much stronger than that of $J_1$.

Keywords

References

  1. Fernandez, S.; Mesa, J. L.; Pizarro, J. L.; Lezama, L.; Arriortua, M. I.; Rojo, T. Chem. Mater. 2003, 15, 1204. https://doi.org/10.1021/cm021361b
  2. Fernandez-Armas, S.; Mesa, J. L.; Pizarro, J. L.; Clemete-Juan, J. M.; Coronado, E.; Arriortua, M. I.; Rojo, T. Inorg. Chem. 2007, 45, 3240.
  3. Whangbo, M.-H.; Koo, H.-J.; Dai, D. J. Solid State Chem. 2003, 176, 417. https://doi.org/10.1016/S0022-4596(03)00273-1
  4. Whangbo, M.-H.; Dai, D.; Koo, H.-J. Solid State Sci. 2005, 7, 827. https://doi.org/10.1016/j.solidstatesciences.2005.02.009
  5. Koo, H.-J.; Whangbo, M.-H. Inorg. Chem. 2005, 44, 4359. https://doi.org/10.1021/ic050159i
  6. Belik, A. A.; Koo, H.-J.; Whangbo, M.-H.; Tsujii, N.; Naumov, P.; Takayama-Muromachi, E. Inorg. Chem. 2007, 46, 8684. https://doi.org/10.1021/ic7008418
  7. Koo, H.-J.; Whangbo, M.-H. Inorg. Chem. 2008, 47, 4779. https://doi.org/10.1021/ic800216j
  8. Koo, H.-J.; Whangbo, M.-H. Inorg. Chem. 2010, 49, 9253. https://doi.org/10.1021/ic100906s
  9. Johnston, D. C.; Johnson, J. W.; Goshorn, D. P.; Jacobson, A. J. Phys. Rev. B 1987, 35, 219. https://doi.org/10.1103/PhysRevB.35.219
  10. Barnes, T.; Riera, J. Phys. Rev. B 1994, 50, 6817. https://doi.org/10.1103/PhysRevB.50.6817
  11. Eccleston, R. S.; Barnes, T.; Brody, J.; Johnson, J. W. Phys. Rev. Lett. 1994, 73, 2626. https://doi.org/10.1103/PhysRevLett.73.2626
  12. Garret, A. W.; Nagler, S. E.; Tennant, D. A.; Sales, B. C.; Barnes, T. Phys. Rev. Lett. 1997, 79, 745. https://doi.org/10.1103/PhysRevLett.79.745
  13. Koo, H.-J,; Whangbo, M.-H. Inorg. Chem. 2000, 39, 3699.
  14. Koo, H.-J.; Whangbo, M.-H.; VerNooy, P. D.; Torardi, C. C.; Marshall, W. J. Inorg. Chem. 2002, 41, 4664. https://doi.org/10.1021/ic020249c
  15. Koo, H.-J.; Whangbo, M.-H. Inorg. Chem. 2006, 45, 4440 https://doi.org/10.1021/ic060392w
  16. Koo, H.-J.; Whangbo, M.-H. Inorg. Chem. 2008, 47, 128. https://doi.org/10.1021/ic701153z
  17. Hay, P. J.; Thibeault, J. C.; Hoffmann, R. J. Am. Chem. Soc. 1975, 97, 4884. https://doi.org/10.1021/ja00850a018
  18. Hoffmann, R. J. Chem. Phys. 1963, 39, 1397. https://doi.org/10.1063/1.1734456
  19. Dai,D.; Ren, J.; Liang, W.; Whangbo, M.-H. http://chvamw.chem.ncsu.edu/, 2002
  20. Clementi, E.; Roetti, C. At. Data Nucl. Data Tables 1974, 14, 177. https://doi.org/10.1016/S0092-640X(74)80016-1
  21. Albright, T, A.; Burdett, J. K.; Whangbo, M.-H. Orbital Interactions in Chemistry; John Wiley & Sons: NY, 1985.
  22. Noodleman, L. J. Chem. Phys. 1981, 74, 5737. https://doi.org/10.1063/1.440939
  23. Illas, F.; Moreira, I. de P. R.; de Graaf, C.; Barone, V. Theor. Chem. Acc. 2000, 104, 265. https://doi.org/10.1007/s002140000133
  24. Chartier, A.; D’Arco, P.; Dovesi, R.; Saunders, V. R. Phys. Rev. B 1999, 60, 14042. https://doi.org/10.1103/PhysRevB.60.14042
  25. Dai, D.; Whangbo, M.-H.; Koo, H.-J.; Rocquefelte, X.; Jobic, S.; Villesuzanne, A. Inorg. Chem. 2005, 44, 2407. https://doi.org/10.1021/ic048431w
  26. Kresse, G.; Hafner, J. Phys. Rev. B 1993, 47, 558. https://doi.org/10.1103/PhysRevB.47.558
  27. Kresse, G.; Furthmüller, J. Comput. Mater. Sci. 1996, 6, 15. https://doi.org/10.1016/0927-0256(96)00008-0
  28. Kresse, G.; Furthmüller, J. Phys. Rev. B 1996, 54, 11169. https://doi.org/10.1103/PhysRevB.54.11169
  29. Perdew, J. P.; Burke, J.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865. https://doi.org/10.1103/PhysRevLett.77.3865
  30. Dudarev, S. L.; Botton, G. A.; Savrasov, S. Y.; Humphreys, C. J.; Sutton, A. P. Phys. Rev. B 1998, 57, 1505. https://doi.org/10.1103/PhysRevB.57.1505
  31. Dai. D.; Whangbo, M.-H. J. Chem. Phys. 2001, 114, 2887. https://doi.org/10.1063/1.1342758
  32. Dai. D.; Whangbo, M.-H. J. Chem. Phys. 2003, 118, 29. https://doi.org/10.1063/1.1525809
  33. Smart, J. S. Effective Field Theory of Magnetism; Saunders: Philadelphia, 1966.
  34. Grau-Crespo, R.; de Leeuw, N. H.; Catlow, C. R. J. Mater. Chem. 2003, 13, 2848. https://doi.org/10.1039/b309796j

Cited by

  1. Density Functional Analysis of the Spin Exchange Interactions in VOSb2O4 vol.33, pp.7, 2012, https://doi.org/10.5012/bkcs.2012.33.7.2338
  2. Breaking a Paradigm: Observation of Magnetic Order in the Purple U(IV) Phosphite: U(HPO3)2 vol.57, pp.16, 2018, https://doi.org/10.1021/acs.inorgchem.8b00754