DOI QR코드

DOI QR Code

Novel Solid Phase Extraction Procedure for Some Trace Elements in Various Samples Prior to Their Determinations by FAAS

  • Sacmaci, Srife (Erciyes University, Department of Chemistry, Faculty of Arts and Sciences) ;
  • Kartal, Senol (Erciyes University, Department of Chemistry, Faculty of Arts and Sciences) ;
  • Sacmaci, Mustafa (Bozok University, Department of Chemistry, Faculty of Arts and Sciences) ;
  • Soykan, Cengiz (Bozok University, Department of Chemistry, Faculty of Arts and Sciences)
  • 투고 : 2010.08.03
  • 심사 : 2010.11.25
  • 발행 : 2011.02.20

초록

A novel method that utilizes poly(5-methyl-2-thiozyl methacrylamide-co-2-acrylamido-2-methyl-1-propanesulfonic acid-co-divinylbenzene) [MTMAAm/AMPS/DVB] as a solid-phase extractant was developed for simultaneous preconcentration of trace Cd(II), Co(II), Cr(III), Cu(II), Fe(III), Mn(II), Ni(II), Pb(II), and Zn(II) prior to the measurement by flame atomic absorpiton spectrometry (FAAS). Experimental conditions for effective adsorption of the metal ions were optimized using column procedures. The optimum pH value for the simultaneously separation of the metal ions on the new adsorbent was 2.5. Effects of concentration and volume of elution solution, sample flow rate, sample volume and interfering ions on the recovery of the analytes were investigated. A high preconcentration factor, 100, and low relative standard deviation values, $\leq$1.5% (n = 10), were obtained. The detection limits (${\mu}gL^{-1}$) based on the 3s criterion were 0.18 for Cd(II), 0.11 for Co(II), 0.07 for Cr(III), 0.12 for Cu(II), 0.18 for Fe(III), 0.67 for Mn(II), 0.13 for Ni(II), 0.06 for Pb(II), and 0.09 for Zn(II). The validation of the procedure was performed by the analysis of two certified reference materials. The presented method was applied to the determination of the analytes in various environmental samples with satisfactory results.

키워드

참고문헌

  1. Minczewski, J.; Chwastowska, J.; Dybczynski, R. Separation and Preconcentration Method in Inorganic Trace Analysis; Ellis Horwood/Halsted Press: Chichester, 1982; p 26.
  2. Tu, Z.; He, Q.; Chang, X.; Hu, Z.; Gao, R.; Zhang, L.; Li, Z. Anal. Chim. Acta 2009, 649, 252. https://doi.org/10.1016/j.aca.2009.07.042
  3. Kagaya, S.; Maeba, E.; Inoue, Y.; Kamichatani, W.; Kajiwara, T.; Yanai, H.; Saito, M.; Tohda, K. Talanta 2009, 79, 146. https://doi.org/10.1016/j.talanta.2009.03.016
  4. Boevski, I.; Daskalova, U. N.; Havezov, I. Spectrochim. Acta B 2000, 55, 1643. https://doi.org/10.1016/S0584-8547(00)00265-2
  5. Atanassova, D.; Stefanova, V.; Russeva, E. Talanta 1998, 47, 1237. https://doi.org/10.1016/S0039-9140(98)00211-2
  6. Nicolai, M.; Rosin, C.; Tousset, N.; Nicolai, Y. Talanta 1999, 50, 433. https://doi.org/10.1016/S0039-9140(99)00130-7
  7. Tarleya, C. R. T.; Santosa, V. S.; Baetaa, B. E. L.; Pereirab, A. C.; Kubota, L. T. J. Hazard. Mater. 2009, 169, 256. https://doi.org/10.1016/j.jhazmat.2009.03.077
  8. Duran, C.; Gündogdu, A.; Bulut, V. N.; Soylak, M.; Elci, L.; senturk, H. B.; Tufekci, M. J. Hazard. Mater. 2007, 146, 347. https://doi.org/10.1016/j.jhazmat.2006.12.029
  9. Rao, T. P.; Daniel, S.; Gladis, J. M. Trends Anal. Chem. 2004, 23, 28. https://doi.org/10.1016/S0165-9936(04)00106-2
  10. Camel, V. Spectrochim. Acta B 2003, 58, 1177. https://doi.org/10.1016/S0584-8547(03)00072-7
  11. Garg, B. S.; Sharma, R. K.; Bhojak, N.; Mittal, S. Microchem J. 1999, 61, 94. https://doi.org/10.1006/mchj.1998.1681
  12. Kantipuly, C.; Atragadda, S. K.; Chow, A.; Gesser, H. D. Talanta 1990, 37, 491. https://doi.org/10.1016/0039-9140(90)80075-Q
  13. Sharma, R. K.; Pant, P. J. Hazard. Mater. 2009, 163, 295. https://doi.org/10.1016/j.jhazmat.2008.06.120
  14. Mashhadizadeh, M. H.; Pesteh, M.; Talakesh, M.; Sheikhshoaie, I.; Ardakani, M. M.; Karimi, M. A. Spectrochim. Acta B 2008, 63, 885. https://doi.org/10.1016/j.sab.2008.03.018
  15. Zougagh, M.; Pavón, J. M. C.; Torres, A. G. Anal. Bioanal. Chem. 2005, 381, 1103. https://doi.org/10.1007/s00216-004-3022-2
  16. Sacmaci, s.; Saçmacı, M.; Soykan, C.; Kartal, S. J. Macromol. Sci. A 2010, 47, 552. https://doi.org/10.1080/10601321003742055
  17. Azab, M. M. J. Polym. Res. 2005, 12, 9. https://doi.org/10.1007/s10965-004-0655-y
  18. Stieber, F.; Mazitschek, R.; Soric, N.; Giannis, A; Waldmann, H. Angew. Chem. Int. Ed. 2002, 41, 4757. https://doi.org/10.1002/anie.200290040
  19. Alan, M.; Kara, D.; Fisher, A. Sep. Sci. Technol. 2007, 42, 879. https://doi.org/10.1080/01496390601174182
  20. Venkatesh, G.; Jain, A.K.; Singh, A. K. Microchim. Acta 2005, 149, 213. https://doi.org/10.1007/s00604-005-0320-0
  21. Ghaedi, M.; Niknam, K.; Shokrollahi, A.; Niknam, E.; Ghaedi, H.; Soylak, M. J. Hazard. Mater. 2008, 158, 131. https://doi.org/10.1016/j.jhazmat.2008.01.037

피인용 문헌

  1. A coprecipitation procedure for the determination of some metals in food and environmental samples by flame atomic absorption spectroscopy vol.5, pp.16, 2013, https://doi.org/10.1039/c3ay40727f
  2. Resting Eggs as New Biosorbent for Preconcentration of Trace Elements in Various Samples Prior to Their Determination by FAAS vol.159, pp.1-3, 2014, https://doi.org/10.1007/s12011-014-0001-0
  3. Pseudo stir bar sorptive microextraction fiber using nanoparticles reinforcedsol–gel for the determination of Co(II) and Cd(II) ions in wastewaters vol.51, pp.4, 2016, https://doi.org/10.1080/01496395.2015.1115070
  4. A new procedure for determination of nickel in some fake jewelry and cosmetics samples after dispersive liquid-liquid microextraction by FAAS vol.31, pp.11, 2017, https://doi.org/10.1002/aoc.4081
  5. @Cu@diphenylthiocarbazone particles vol.41, pp.15, 2017, https://doi.org/10.1039/C7NJ00776K
  6. A Zn based metal organic framework nanocomposite: synthesis, characterization and application for preconcentration of cadmium prior to its determination by FAAS vol.7, pp.71, 2017, https://doi.org/10.1039/C7RA08354H
  7. a zeta potential analyzer vol.42, pp.7, 2018, https://doi.org/10.1039/C7NJ04900E
  8. Solid-phase extraction of ultra-trace levels of lead using tannic acid-coated graphene oxide as an efficient adsorbent followed by electrothermal atomic absorption spectrometry; response surface methodology – central composite design vol.42, pp.2, 2018, https://doi.org/10.1039/C7NJ03226A
  9. Influence of chemical speciation on the separation of metal ions from chelating agents by nanofiltration membranes pp.1520-5754, 2018, https://doi.org/10.1080/01496395.2018.1502781
  10. An automated solid phase extraction coupled with electrothermal atomic absorption spectrometric determination of Pb(II) in high salt content samples vol.86, pp.None, 2011, https://doi.org/10.1016/j.talanta.2011.08.045
  11. Magnetic dispersive solid‐phase extraction based on graphene oxide/Fe3O4@polythionine nanocomposite followed by atomic absorption spectrometry for zinc monitoring in water, vol.98, pp.9, 2011, https://doi.org/10.1002/jsfa.8873
  12. A rapid ultrasonic energy assisted preconcentration method for simultaneous extraction of lead and cadmium in various cosmetic brands using deep eutectic solvent: A multivariate study vol.51, pp.None, 2011, https://doi.org/10.1016/j.ultsonch.2018.10.016
  13. A tandem ionic liquid‐based dispersive microextraction method using in‐syringe air‐assisted vesicle system for rapid determination of lead and cadmium in artificial sweat extract of vol.34, pp.9, 2011, https://doi.org/10.1002/aoc.5784
  14. Lead of detection in rhododendron leaves using laser-induced breakdown spectroscopy assisted by laser-induced fluorescence vol.738, pp.None, 2020, https://doi.org/10.1016/j.scitotenv.2020.139402
  15. Determination of Manganese in Coffee and Wastewater Using Deep Eutectic Solvent Based Extraction and Flame Atomic Absorption Spectrometry vol.54, pp.6, 2011, https://doi.org/10.1080/00032719.2020.1789871
  16. Air-assisted liquid-liquid microextraction combined with flame atomic absorption spectrometry for determination of trace Pb in biological and aqueous samples vol.101, pp.6, 2011, https://doi.org/10.1080/03067319.2019.1672672