DOI QR코드

DOI QR Code

Reactive Ion Scattering of Low Energy Cs+ from Surfaces. A Technique for Surface Molecular Analysis

  • Kang, Heon (Department of Chemistry, Seoul National University)
  • Received : 2010.12.11
  • Accepted : 2010.12.28
  • Published : 2011.02.20

Abstract

Although the currently available surface spectroscopic techniques provide powerful means of studying atoms and simple molecules on surfaces, the identification of complex molecules and functional groups is a major concern in surface analysis. This article describes a recently developed method of surface molecular analysis based on reactive ion scattering (RIS) of low energy (< 100 eV) $Cs^+$ beams. The RIS method can detect surface molecules via a mechanism in which a $Cs^+$ projectile picks up an adsorbate from the surface during the scattering process. The basic principles of the method are reviewed and its applications are discussed by showing several examples from studies of molecules and their reactions on surfaces.

Keywords

References

  1. Ertl, G.; Küppers, J. Low Energy Electrons and Surface Chemistry; VCH Publishers: 1985.
  2. Yang, M. C.; Lee, H. W.; Kang, H. J. Chem. Phys.1995, 103, 5149. https://doi.org/10.1063/1.470602
  3. Yang, M. C.; Hwang, C. H.; Ku, J. K.; Kang, H. Surface Sci. 1996, 366, L719. https://doi.org/10.1016/0039-6028(96)00945-4
  4. Yang, M. C.; Hwang, C. H.; Kang, H. J. Chem. Phys. 1997, 107, 2611. https://doi.org/10.1063/1.474572
  5. Kang, H.; Kim, K. D.; Kim, K. Y. J. Am. Chem. Soc. 1997, 119, 12002. https://doi.org/10.1021/ja970246c
  6. Kang, H.; Yang, M. C.; Kim, K. D.; Kim, K. Y. Int. J. Mass Spectrom. Ion Proc. 1998, 174, 143. https://doi.org/10.1016/S0168-1176(97)00297-8
  7. Kim, K.-Y.; Shin, T.-H.; Han, S.-J.; Kang, H. Phys. Rev. Lett. 1999, 82, 1329. https://doi.org/10.1103/PhysRevLett.82.1329
  8. Shin, T.-H.; Han, S.-J.; Kang, H. Nucl. Instrum. Methods in Phys. Res. B 1999, 157, 191. https://doi.org/10.1016/S0168-583X(99)00419-X
  9. Han, S-J.; Park, S. C.; Lee, J.-G.; Kang, H. J. Chem. Phys. 2000, 112, 8660. https://doi.org/10.1063/1.481467
  10. Park, S.-C.; Kang, H.; Lee, S. B. Surface Sci. 2000, 450, 117. https://doi.org/10.1016/S0039-6028(00)00052-2
  11. Yoon, H. G. et al. J. Vac. Sci. Tech. A 2000, 18, 1464. https://doi.org/10.1116/1.582470
  12. Liu, W. L. et al. Thin Solid Films 2004, 461, 266. https://doi.org/10.1016/j.tsf.2004.02.038
  13. Kang, H.; Shin, T.-H.; Park, S.-C.; Kim, I. K.; Han, S.-J. J. Am. Chem. Soc. 2000, 122, 9842 . https://doi.org/10.1021/ja000218l
  14. Park, S.-C.; Pradeep, T.; Kang, H. J. Chem. Phys. 2000, 113, 9373. https://doi.org/10.1063/1.1328361
  15. Park, S.-C.; Maeng, K.-W.; Pradeep, T.; Kang, H. Angew. Chem. Int. Ed. 2001, 40, 1497. https://doi.org/10.1002/1521-3773(20010417)40:8<1497::AID-ANIE1497>3.0.CO;2-F
  16. Park, S.-C.; Maeng, K.-W.; Pradeep, T.; Kang, H. Nucl. Instrum.Methods in Phys. Res. B 2001, 182, 193. https://doi.org/10.1016/S0168-583X(01)00675-9
  17. Han, S-J.; Lee, C.-W.; Hwang, C.-H.; Lee, K.-H.; Yang, C.; Kang, H. Bull. Korean Chem. Soc. 2001, 22, 883.
  18. Hwang, C.-H.; Lee, C.-W.; Kang, H.; Kim, C. M. Surface Sci. 2001, 490, 144. https://doi.org/10.1016/S0039-6028(01)01324-3
  19. Kang, H.; Lee, C. W.; Hwang, C. H.; Kim, C. M. Appl. Surface Sci. 2003, 203, 842. https://doi.org/10.1016/S0169-4332(02)00819-X
  20. Kim, C. M.; Hwang, C.-H.; Lee, C.-W.; Kang, H. Angew. Chem. Int. Ed. 2001, 41, 146.
  21. Kasi, S. R.; Kang, H.; Sass, C. S.; Rabalais, J. W. Surf. Sci. Rep.1989, 10, 1. https://doi.org/10.1016/0167-5729(89)90005-8
  22. Morris, M. R.; Riederer, D. E.; Winger, B. E., Jr.; Cooks, R. G.; Ast, T.; Chidsey, C. E. D. Int. J. Mass Spectrom. Ion Poc. 1992, 122, 181. https://doi.org/10.1016/0168-1176(92)87016-8
  23. Cooks, R. G.; Ast, T.; Pradeep, T.; Wysocki, V. Acc. Chem. Res. 1994, 27, 316. https://doi.org/10.1021/ar00047a001
  24. Murata, Y. Unimolecular and Bimolecular Reaction Dynamic; Ng, C. Y., Baer, T., Powis, I., Eds.; John Wiley & Sons: 1994; Chapter 9.
  25. Han, S-J.; Lee, C.-W.; Yoon, H.; Kang, H. J. Chem. Phys. 2002, 116, 2684. https://doi.org/10.1063/1.1449948
  26. Kim, Y. K.; Park, S. C.; Kim, J. H.; Lee, C. W.; Kang, H. J. Phys. Chem. C 2008, 112, 18104. https://doi.org/10.1021/jp806643e
  27. Kim, Y. K.; Kim, S. K.; Kim, J. H.; Kang, H. J. Phys. Chem. C 2009, 113, 16863. https://doi.org/10.1021/jp907653y
  28. Kim, S. K.; Kang, H. J. Phys. Chem. Lett. 2010, 1, 3085-3089. https://doi.org/10.1021/jz1011669
  29. Kang, H. Acc. Chem. Res. 2005, 38, 893. https://doi.org/10.1021/ar0501471
  30. Jung, K. H.; Park, S. C.; Kim, J. H.; Kang, H. J. Chem. Phys. 2004, 121, 2758. https://doi.org/10.1063/1.1770518
  31. Park, S. C.; Pradeep, T.; Kang, H. J. Chem. Phys. 2000, 113, 9373. https://doi.org/10.1063/1.1328361
  32. Kim, J. H.; Shin, T.; Jung, K. H.; Kang, H. ChemPhysChem 2005, 6, 440. https://doi.org/10.1002/cphc.200400429
  33. Kim, J. H.; Kim, Y. K.; Kang, H. J. Phys. Chem. C 2007, 111, 8030. https://doi.org/10.1021/jp0701587
  34. Park, S. C.; Jung, K. H.; Kang, H. J. Chem. Phys. 2004, 121, 2765. https://doi.org/10.1063/1.1770548
  35. Park, S. C.; Maeng, K. W.; Pradeep, T.; Kang, H. Angew. Chem. Int. Ed. 2001, 40, 1497. https://doi.org/10.1002/1521-3773(20010417)40:8<1497::AID-ANIE1497>3.0.CO;2-F
  36. Park, S. C.; Kang, H. J. Phys. Chem. B 2005, 109, 5124.
  37. Park, S. C.; Kim, J. K.; Lee, C. W.; Moon, E. S.; Kang, H. ChemPhysChem 2007, 8, 2520. https://doi.org/10.1002/cphc.200700489
  38. Lee, C. W.; Lee, P. R.; Kang, H. Angew. Chem. Int. Ed. 2006, 45, 5529. https://doi.org/10.1002/anie.200601317
  39. Lee, C. W.; Lee, P. R.; Kim, Y. K.; Kang, H. J. Chem. Phys. 2007, 127, 084701. https://doi.org/10.1063/1.2759917
  40. Moon, E. S.; Lee, C. W.; Kang, H. Phys. Chem. Chem. Phys. 2008, 10, 4814. https://doi.org/10.1039/b807730b
  41. Moon, E. S.; Lee, C. W.; Kim, J. K.; Park, S. C.; Kang, H. J. Chem. Phys. 2008, 128, 191101. https://doi.org/10.1063/1.2925209
  42. Kim, J. H.; Kim, Y. K.; Kang, H. J. Chem. Phys. 2009, 131, 044705. https://doi.org/10.1063/1.3187544
  43. Moon, E. S.; Yoon, J.; Kang, H. J. Chem. Phys. 2010, 133, 044709. https://doi.org/10.1063/1.3457379
  44. Park, S. C.; Maeng, K. W.; Kang, H. Chem.-Eur. J. 2003, 9, 1706. https://doi.org/10.1002/chem.200390194
  45. Kim, J. H.; Kim, Y. K.; Kang, H. J. Phys. Chem. C 2009, 113, 321. https://doi.org/10.1021/jp807774v
  46. Lee, P. R.; Lee, C. W.; Kim, J. K.; Moon, E. S.; Kang, H. Chem.-Asian J., in press.
  47. Lee, C. W.; Kim, J. K.; Moon, E. S.; Minh, Y. C.; Kang, H. Astrophys J. 2009, 697, 428. https://doi.org/10.1088/0004-637X/697/1/428
  48. Moon, E. S.; Kang, H.; Oba, Y.; Watanabe, N.; Kouchi, A. Astrophys J. 2010, 713, 906. https://doi.org/10.1088/0004-637X/713/2/906
  49. Park, S-C.; Moon, E-S.; Kang, H. Phys. Chem. Chem. Phys. 2010, 12, 12000. https://doi.org/10.1039/c003592k
  50. Lahaye, R. J. W. E.; Kang, H. Phys. Rev. B 2003, 67, 033401. https://doi.org/10.1103/PhysRevB.67.033401
  51. Lahaye, R. J. W. E. Surf. Sci. 2010, 604, 1135. https://doi.org/10.1016/j.susc.2010.03.028
  52. Han, S.-J.; Lee, C.-W.; Lahaye, R. J. W. E.; Kang, H. Surf. Sci. 2003, 538, 184. https://doi.org/10.1016/S0039-6028(03)00727-1
  53. Lahaye, R. J. W. E.; Kang, H. ChemPhysChem 2004, 5, 697. https://doi.org/10.1002/cphc.200300983
  54. Hahn, J. R.; Lee, C.-W.; Han, S. J.; Lahaye, R. J. W. E.; Kang, H. J. Phys. Chem. A 2002, 106, 9827. https://doi.org/10.1021/jp0203402
  55. Lee, C.-W.; Lee, P.-R.; Lahaye, R. J. W. E.; Kang, H. Phys. Chem. Chem. Phys. 2009, 11, 2268. https://doi.org/10.1039/b815764b
  56. Kim, J.-H.; Lahaye, R. J. W. E.; Kang, H. Surf. Sci. 2007, 601, 434. https://doi.org/10.1016/j.susc.2006.06.043
  57. Heiland, W. Principles of Low Energy Ion Scattering, Vacuum 1982, 32, 539.
  58. Rabalais, J. W. Principles and Applications of Ion Scattering Spectrometry; Wiley-Interscience: 2003.
  59. Lahaye, R. J. W. E.; Kang, H. Surface Sci. 2001, 490, 144. https://doi.org/10.1016/S0039-6028(01)01324-3
  60. Yang, M. C.; Lee, H. W.; Kim, C.; Kang, H. Surface Sci. 1996, 357, 595. https://doi.org/10.1016/0039-6028(96)00229-4
  61. Lee, H. W.; Kang, H. Bull. Korean Chem. Soc. 1995, 16, 101.
  62. Bazarbayev, N. N.; Evstifeev, V. V.; Krylov, N. M.; Kubryaschova, L. B. Soviet. J. Surface (Russian) 1988, 9, 170.
  63. Evstifeev, V. V.; Ivanov, I. V. Surface Sci. 1989, 217, L373.
  64. Kim, C.; Kang, H.; Park, S. C. Nucl. Instrum. Methods in Phys. Res. B 1995, 95, 171. https://doi.org/10.1016/0168-583X(94)00432-3
  65. Kolodney, E.; Amirav, A.; Elber, R.; Gerber, R. B. Chem. Phys. Lett. 1985, 113, 303. https://doi.org/10.1016/0009-2614(85)80265-7
  66. Kim, C.; Han, J. R.; Kang, H. Surface Sci. 1994, 320, L76. https://doi.org/10.1016/0039-6028(94)90301-8
  67. Shin, T.; Kim, K. N.; Lee, C.W.; Shin, S. K.; Kang, H. J. Phys. Chem. B 2003, 107, 11674. https://doi.org/10.1021/jp030314j
  68. Salmeron, M.; Somorjai, G. A. J. Phys. Chem. 1982, 86, 341. https://doi.org/10.1021/j100392a013
  69. Zaera, F.; Janssens, T. V. W.; Ofner, H. Surf. Sci. 1996, 368, 371. https://doi.org/10.1016/S0039-6028(96)01078-3
  70. Sheppard, N. Ann. Rev. Phys. Chem. 1988, 39, 589. https://doi.org/10.1146/annurev.pc.39.100188.003105
  71. Buch, V.; Sadlej, J.; Aytemiz-Uras, N.; Devlin, J. P. J. Phys. Chem. A 2002, 106, 9374. https://doi.org/10.1021/jp021539h
  72. Molina, M. J.; Tso, T. L.; Molina, L. T.; Wang, F. C. Y. Science 1987, 238, 1253. https://doi.org/10.1126/science.238.4831.1253

Cited by

  1. Low-Energy Ionic Collisions at Molecular Solids vol.112, pp.10, 2012, https://doi.org/10.1021/cr200384k
  2. Transport and Surface Accumulation of Hydroniums and Chlorides in an Ice Film. A High Temperature (140–180 K) Study vol.116, pp.41, 2012, https://doi.org/10.1021/jp3061416
  3. Generation of strong electric fields in an ice film capacitor vol.139, pp.7, 2013, https://doi.org/10.1063/1.4818535
  4. Probing Molecular Solids with Low-Energy Ions vol.6, pp.1, 2013, https://doi.org/10.1146/annurev-anchem-062012-092547
  5. Phase Transitions of Amorphous Solid Acetone in Confined Geometry Investigated by Reflection Absorption Infrared Spectroscopy vol.118, pp.47, 2014, https://doi.org/10.1021/jp503997t
  6. Effect of Electric Field on Condensed-Phase Molecular Systems. I. Dipolar Polarization of Amorphous Solid Acetone vol.119, pp.27, 2015, https://doi.org/10.1021/acs.jpcc.5b01849
  7. Reaction of Nitrogen Dioxide with Ice Surface at Low Temperature (≤170 K) vol.119, pp.38, 2015, https://doi.org/10.1021/acs.jpcc.5b05497
  8. Solvation and Reaction of Ammonia in Molecularly Thin Water Films vol.119, pp.40, 2015, https://doi.org/10.1021/acs.jpcc.5b07525
  9. Ions vol.120, pp.22, 2016, https://doi.org/10.1021/acs.jpcc.6b03146
  10. Interaction of Acetonitrile with Alcohols at Cryogenic Temperatures vol.121, pp.5, 2017, https://doi.org/10.1021/acs.jpcc.6b11483
  11. The Nature of Hydrated Protons on Platinum Surfaces pp.09476539, 2017, https://doi.org/10.1002/chem.201703882
  12. Spectroscopic Monitoring of the Acidity of Water Films on Ru(0001): Orientation-Specific Acidity of Adsorbed Water vol.20, pp.12, 2014, https://doi.org/10.1002/chem.201304424
  13. Acidic Water Monolayer on Ruthenium(0001) vol.124, pp.51, 2011, https://doi.org/10.1002/ange.201205756
  14. Acidic Water Monolayer on Ruthenium(0001) vol.51, pp.51, 2012, https://doi.org/10.1002/anie.201205756
  15. Asymmetric Transport Efficiencies of Positive and Negative Ion Defects in Amorphous Ice vol.108, pp.22, 2011, https://doi.org/10.1103/physrevlett.108.226103
  16. Zundel‐like and Eigen‐like Hydrated Protons on a Platinum Surface vol.127, pp.26, 2011, https://doi.org/10.1002/ange.201500410
  17. Zundel‐like and Eigen‐like Hydrated Protons on a Platinum Surface vol.54, pp.26, 2011, https://doi.org/10.1002/anie.201500410
  18. Efficient Thermal Reactions of Sulfur Dioxide on Ice Surfaces at Low Temperature: A Combined Experimental and Theoretical Study vol.1, pp.8, 2017, https://doi.org/10.1021/acsearthspacechem.7b00064
  19. Acid-Promoted Crystallization of Amorphous Solid Water vol.122, pp.42, 2011, https://doi.org/10.1021/acs.jpcc.8b07858
  20. Iron assisted formation of CO2 over condensed CO and its relevance to interstellar chemistry vol.22, pp.16, 2011, https://doi.org/10.1039/c9cp06983f
  21. Physics and chemistry on the surface of cosmic dust grains: a laboratory view vol.40, pp.2, 2011, https://doi.org/10.1080/0144235x.2021.1918498
  22. Proton Transport and Related Chemical Processes of Ice vol.125, pp.30, 2011, https://doi.org/10.1021/acs.jpcb.1c04414