DOI QR코드

DOI QR Code

Lipid Peroxidation and Its Toxicological Implications

  • 투고 : 2010.12.05
  • 심사 : 2010.12.22
  • 발행 : 2011.03.01

초록

Lipid peroxidation is a free radical oxidation of polyunsaturated fatty acids such as linoleic acid or arachidonic acid. This process has been related with various pathologies and disease status mainly because of the oxidation products formed during the process. The oxidation products include reactive aldehydes such as malondialdehyde and 4-hydroxynonenal. These reactive aldehydes can form adducts with DNAs and proteins, leading to the alterations in their functions to cause various diseases. This review will provide a short summary on the implication of lipid peroxidation on cancer, atherosclerosis, and neurodegeneration as well as chemical and biochemical mechanisms by which these adducts affect the pathological conditions. In addition, select examples will be presented where antioxidants were used to counteract oxidative damage caused by lipid peroxidation. At the end, isoprostanes are discussed as a gold standard for the assessment of oxidative damages.

키워드

참고문헌

  1. Adams, J.D. Jr. and Odunze, I.N. (1991). Oxygen free radicals and Parkinson’s disease. Free Radic. Biol. Med., 10, 161-169. https://doi.org/10.1016/0891-5849(91)90009-R
  2. Blair, I.A. (2008). DNA adducts with lipid peroxidation products. J. Biol. Chem., 283, 15545-15549. https://doi.org/10.1074/jbc.R700051200
  3. Boutaud, O., Montine, T.J., Chang, L., Klein, W.L. and Oates, J.A. (2006). PGH2-derived levuglandin adducts increase the neurotoxicity of amyloid beta1-42. J. Neurochem., 96, 917-923. https://doi.org/10.1111/j.1471-4159.2005.03586.x
  4. Bowry, V.W., Ingold, K.U. and Stocker, R. (1992). Vitamin E in human low-density lipoprotein. When and how this antioxidant becomes a pro-oxidant. Biochem. J., 288, 341-344. https://doi.org/10.1042/bj2880341
  5. Bradley, M.A., Markesbery, W.R. and Lovell, M.A. (2010). Increased levels of 4-hydroxynonenal and acrolein in the brain in preclinical Alzheimer disease. Free Radic. Biol. Med., 48, 1570-1576. https://doi.org/10.1016/j.freeradbiomed.2010.02.016
  6. Brash, A.R. (1999). Lipoxygenases: occurrence, functions, catalysis, and acquisition of substrate. J. Biol. Chem., 274, 23679-23682. https://doi.org/10.1074/jbc.274.34.23679
  7. Chaudhary, A.K., Nokubo, M., Reddy, G.R., Yeola, S.N., Morrow, J.D., Blair, I.A. and Marnett, L.J. (1994). Detection of endogenous malondialdehyde-deoxyguanosine adducts in human liver. Science, 265, 1580-1582. https://doi.org/10.1126/science.8079172
  8. Chaudhary, A.K., Reddy, G.R., Blair, I.A. and Marnett, L.J. (1996). Characterization of an N6-oxopropenyl-2'-deoxyadenosine adduct in malondialdehyde-modified DNA using liquid chromatography/electrospray ionization tandem mass spectrometry. Carcinogenesis, 17, 1167-1170. https://doi.org/10.1093/carcin/17.5.1167
  9. Chung, F.L., Pan, J., Choudhury, S., Roy, R., Hu, W. and Tang, M.S. (2003). Formation of trans-4-hydroxy-2-nonenal- and other enal-derived cyclic DNA adducts from omega-3 and omega-6 polyunsaturated fatty acids and their roles in DNA repair and human p53 gene mutation. Mutat. Res., 531, 25-36. https://doi.org/10.1016/j.mrfmmm.2003.07.001
  10. Codreanu, S.G., Zhang, B., Sobecki, S.M., Billheimer, D.D. and Liebler, D.C. (2009). Global analysis of protein damage by the lipid electrophile 4-hydroxy-2-nonenal. Mol. Cell. Proteomics, 8, 670-680. https://doi.org/10.1074/mcp.M800070-MCP200
  11. Davi, G., Ciabattoni, G., Consoli, A., Mezzetti, A., Falco, A., Santarone, S., Pennese, E., Vitacolonna, E., Bucciarelli, T., Costantini, F., Capani, F. and Patrono, C. (1999). In vivo formation of 8-iso-prostaglandin f2alpha and platelet activation in diabetes mellitus: effects of improved metabolic control and vitamin E supplementation. Circulation, 99, 224-229. https://doi.org/10.1161/01.CIR.99.2.224
  12. Davi, G., Chiarelli, F., Santilli, F., Pomilio, M., Vigneri, S., Falco, A., Basili, S., Ciabattoni, G. and Patrono, C. (2003). Enhanced lipid peroxidation and platelet activation in the early phase of type 1 diabetes mellitus: role of interleukin-6 and disease duration. Circulation, 107, 3199-3203. https://doi.org/10.1161/01.CIR.0000074205.17807.D0
  13. Davies, S.S. and Roberts, L.J., 2nd. (2011). F(2)-isoprostanes as an indicator and risk factor for coronary heart disease. Free Radic. Biol. Med., 50, 559-566. https://doi.org/10.1016/j.freeradbiomed.2010.11.023
  14. Drake, J., Petroze, R., Castegna, A., Ding, Q., Keller, J.N., Markesbery, W.R., Lovell, M.A. and Butterfield, D.A. (2004), 4-Hydroxynonenal oxidatively modifies histones: implications for Alzheimer’s disease. Neurosci. Lett., 356, 155-158. https://doi.org/10.1016/j.neulet.2003.11.047
  15. Fessel, J.P., Porter, N.A., Moore, K.P., Sheller, J.R. and Roberts, L.J., 2nd. (2002). Discovery of lipid peroxidation products formed in vivo with a substituted tetrahydrofuran ring (isofurans) that are favored by increased oxygen tension. Proc. Natl. Acad. Sci. U S A, 99, 16713-16718. https://doi.org/10.1073/pnas.252649099
  16. Fessel, J.P. and Jackson Roberts, L. (2005). Isofurans: novel products of lipid peroxidation that define the occurrence of oxidant injury in settings of elevated oxygen tension. Antioxid Redox Signal, 7, 202-209. https://doi.org/10.1089/ars.2005.7.202
  17. Fink, S.P., Reddy, G.R. and Marnett, L.J. (1997). Mutagenicity in Escherichia coli of the major DNA adduct derived from the endogenous mutagen malondialdehyde. Proc. Natl. Acad. Sci. U S A, 94, 8652-8657. https://doi.org/10.1073/pnas.94.16.8652
  18. Glass, C.K. and Witztum, J.L. (2001). Atherosclerosis. the road ahead. Cell, 104, 503-516. https://doi.org/10.1016/S0092-8674(01)00238-0
  19. Jacobs, A.T. and Marnett, L.J. (2007). Heat shock factor 1 attenuates 4-Hydroxynonenal-mediated apoptosis: critical role for heat shock protein 70 induction and stabilization of Bcl-XL. J. Biol. Chem., 282, 33412-33420. https://doi.org/10.1074/jbc.M706799200
  20. Jacobs, A.T. and Marnett, L.J. (2010). Systems analysis of protein modification and cellular responses induced by electrophile stress. Acc. Chem. Res., 43, 673-683. https://doi.org/10.1021/ar900286y
  21. Ji, C., Kozak, K.R. and Marnett, L.J. (2001). IkappaB kinase, a molecular target for inhibition by 4-hydroxy-2-nonenal. J. Biol. Chem., 276, 18223-18228. https://doi.org/10.1074/jbc.M101266200
  22. Kadiiska, M.B., Gladen, B.C., Baird, D.D., Germolec, D., Graham, L.B., Parker, C.E., Nyska, A., Wachsman, J.T., Ames, B.N., Basu, S., Brot, N., Fitzgerald, G.A., Floyd, R.A., George, M., Heinecke, J.W., Hatch, G.E., Hensley, K., Lawson, J.A., Marnett, L.J., Morrow, J.D., Murray, D.M., Plastaras, J., Roberts, L J., 2nd, Rokach, J., Shigenaga, M.K., Sohal, R.S., Sun, J., Tice, R.R., Van Thiel, D.H., Wellner, D., Walter, P.B., Tomer, K.B., Mason, R.P. and Barrett, J.C. (2005). Biomarkers of oxidative stress study II: are oxidation products of lipids, proteins, and DNA markers of CCl4 poisoning? Free Radic. Biol. Med., 38, 698-710. https://doi.org/10.1016/j.freeradbiomed.2004.09.017
  23. Keaney, J.F., Jr., Larson, M.G., Vasan, R.S., Wilson, P.W., Lipinska, I., Corey, D., Massaro, J.M., Sutherland, P., Vita, J.A. and Benjamin, E.J. (2003). Obesity and systemic oxidative stress: clinical correlates of oxidative stress in the framingham study. Arterioscler Thromb Vasc Biol., 23, 434-439. https://doi.org/10.1161/01.ATV.0000058402.34138.11
  24. Kim, H.Y., Pratt, D.A., Seal, J.R., Wijtmans, M. and Porter, N.A. (2005). Lipid-soluble 3-pyridinol antioxidants spare alpha-tocopherol and do not efficiently mediate peroxidation of cholesterol esters in human low-density lipoprotein. J. Med. Chem., 48, 6787-6789. https://doi.org/10.1021/jm0507173
  25. Klaunig, J.E. and Kamendulis, L.M. (2004). The role of oxidative stress in carcinogenesis. Annu. Rev. Pharmacol. Toxicol., 44, 239-267. https://doi.org/10.1146/annurev.pharmtox.44.101802.121851
  26. Lee, S.H. and Blair, I.A. (2001). Oxidative DNA damage and cardiovascular disease. Trends Cardiovasc Med., 11, 148-155. https://doi.org/10.1016/S1050-1738(01)00094-9
  27. Levine, M., Wang, Y., Padayatty, S.J. and Morrow, J. (2001). A new recommended dietary allowance of vitamin C for healthy young women. Proc. Natl. Acad. Sci. U S A, 98, 9842-9846. https://doi.org/10.1073/pnas.171318198
  28. Lovell, M.A., Ehmann, W.D., Mattson, M.P. and Markesbery, W.R. (1997). Elevated 4-hydroxynonenal in ventricular fluid in Alzheimer’s disease. Neurobiol Aging, 18, 457-461. https://doi.org/10.1016/S0197-4580(97)00108-5
  29. Lovell, M.A., Xie, C. and Markesbery, W.R. (2001). Acrolein is increased in Alzheimer’s disease brain and is toxic to primary hippocampal cultures. Neurobiol. Aging., 22, 187-194. https://doi.org/10.1016/S0197-4580(00)00235-9
  30. Markesbery, W.R., Kryscio, R.J., Lovell, M.A. and Morrow, J.D. (2005). Lipid peroxidation is an early event in the brain in amnestic mild cognitive impairment. Ann. Neurol., 58, 730-735. https://doi.org/10.1002/ana.20629
  31. Marnett, L.J. (1999). Lipid peroxidation-DNA damage by malondialdehyde. Mutat. Res., 424, 83-95. https://doi.org/10.1016/S0027-5107(99)00010-X
  32. Marnett, L.J. (2000). Oxyradicals and DNA damage. Carcinogenesis, 21, 361-370. https://doi.org/10.1093/carcin/21.3.361
  33. Milne, G.L., Musiek, E.S. and Morrow, J.D. (2005). F2-isoprostanes as markers of oxidative stress in vivo: An overview. Biomarkers, 10, S10-23.
  34. Milne, G.L., Yin, H., Brooks, J.D., Sanchez, S., Jackson Roberts, L., 2nd and Morrow, J.D. (2007). Quantification of F2-isoprostanes in biological fluids and tissues as a measure of oxidant stress. Methods Enzymol., 433, 113-126. https://doi.org/10.1016/S0076-6879(07)33006-1
  35. Milne, G.L., Yin, H. and Morrow, J.D. (2008) Human biochemistry of the isoprostane pathway. J. Biol. Chem., 283, 15533-15537. https://doi.org/10.1074/jbc.R700047200
  36. Minko, I.G., Kozekov, I.D., Harris, T.M., Rizzo, C.J., Lloyd, R.S. and Stone, M.P. (2009) Chemistry and biology of DNA containing 1,N(2)-deoxyguanosine adducts of the alpha,beta-unsaturated aldehydes acrolein, crotonaldehyde, and 4-hydroxynonenal. Chem. Res. Toxicol., 22, 759-778. https://doi.org/10.1021/tx9000489
  37. Montine, K.S., Quinn, J.F., Zhang, J., Fessel, J.P., Roberts, L.J., 2nd, Morrow, J.D. and Montine, T.J. (2004). Isoprostanes and related products of lipid peroxidation in neurodegenerative diseases. Chem. Phys. Lipids, 128, 117-124. https://doi.org/10.1016/j.chemphyslip.2003.10.010
  38. Morrow, J.D., Hill, K.E., Burk, R.F., Nammour, T.M., Badr, K.F. and Roberts, L.J., 2nd. (1990). A series of prostaglandin F2-like compounds are produced in vivo in humans by a non-cyclooxygenase, free radical-catalyzed mechanism. Proc. Natl. Acad. Sci. U S A, 87, 9383-9387. https://doi.org/10.1073/pnas.87.23.9383
  39. Morrow, J.D., Frei, B., Longmire, A.W., Gaziano, J.M., Lynch, S.M., Shyr, Y., Strauss, W.E., Oates, J.A. and Roberts, L.J., 2nd. (1995). Increase in circulating products of lipid peroxidation (F2-isoprostanes) in smokers. Smoking as a cause of oxidative damage. N. Engl. J. Med., 332, 1198-1203. https://doi.org/10.1056/NEJM199505043321804
  40. Morrow, J.D. (2005). Quantification of isoprostanes as indices of oxidant stress and the risk of atherosclerosis in humans. Arterioscler Thromb Vasc Biol., 25, 279-286.
  41. Muller, F.L., Lustgarten, M.S., Jang, Y., Richardson, A. and Van Remmen, H. (2007). Trends in oxidative aging theories. Free Radic. Biol. Med., 43, 477-503. https://doi.org/10.1016/j.freeradbiomed.2007.03.034
  42. Nam, T.G., Rector, C.L., Kim, H.Y., Sonnen, A.F., Meyer, R., Nau, W.M., Atkinson, J., Rintoul, J., Pratt, D.A. and Porter, N.A. (2007). Tetrahydro-1,8-naphthyridinol analogues of alpha-tocopherol as antioxidants in lipid membranes and low-density lipoproteins. J. Am. Chem. Soc., 129, 10211-10219. https://doi.org/10.1021/ja072371m
  43. Negre-Salvayre, A., Auge, N., Ayala, V., Basaga, H., Boada, J., Brenke, R., Chapple, S., Cohen, G., Feher, J., Grune, T., Lengyel, G., Mann, G.E., Pamplona, R., Poli, G., Portero-Otin, M., Riahi, Y., Salvayre, R., Sasson, S., Serrano, J., Shamni, O., Siems, W., Siow, R.C., Wiswedel, I., Zarkovic, K. and Zarkovic, N. (2010). Pathological aspects of lipid peroxidation. Free Radic. Res., 44, 1125-1171. https://doi.org/10.3109/10715762.2010.498478
  44. Niedernhofer, L.J., Daniels, J.S., Rouzer, C.A., Greene, R.E. and Marnett, L.J. (2003). Malondialdehyde, a product of lipid peroxidation, is mutagenic in human cells. J. Biol. Chem., 278, 31426-31433. https://doi.org/10.1074/jbc.M212549200
  45. Porter, N.A. (1986). Mechanisms for the autoxidation of polyunsaturated fatty acids. Acc. Chem. Res., 19, 262-268. https://doi.org/10.1021/ar00129a001
  46. Porter, N.A., Caldwell, S.E. and Mills, K.A. (1995). Mechanisms of free radical oxidation of unsaturated lipids. Lipids, 30, 277-290. https://doi.org/10.1007/BF02536034
  47. Pratico, D., Tangirala, R.K., Rader, D.J., Rokach, J. and FitzGerald, G.A. (1998). Vitamin E suppresses isoprostane generation in vivo and reduces atherosclerosis in ApoE-deficient mice. Nat. Med., 4, 1189-1192. https://doi.org/10.1038/2685
  48. Roberts, L.J., 2nd, Montine, T.J., Markesbery, W.R., Tapper, A.R., Hardy, P., Chemtob, S., Dettbarn, W.D. and Morrow, J.D. (1998). Formation of isoprostane-like compounds (neuroprostanes) in vivo from docosahexaenoic acid. J. Biol. Chem., 273, 13605-13612. https://doi.org/10.1074/jbc.273.22.13605
  49. Roberts, L.J., 2nd, Oates, J.A., Linton, M.F., Fazio, S., Meador, B.P., Gross, M.D., Shyr, Y. and Morrow, J.D. (2007). The relationship between dose of vitamin E and suppression of oxidative stress in humans. Free Radic. Biol. Med., 43, 1388-1393. https://doi.org/10.1016/j.freeradbiomed.2007.06.019
  50. Rouzer, C.A. and Marnett, L.J. (2003). Mechanism of free radical oxygenation of polyunsaturated fatty acids by cyclooxygenases. Chem. Rev., 103, 2239-2304. https://doi.org/10.1021/cr000068x
  51. Rouzer, C.A. and Marnett, L.J. (2009). Cyclooxygenases: structural and functional insights. J. Lipid Res., 50, S29-34. https://doi.org/10.1194/jlr.R800042-JLR200
  52. Serwa, R., Nam, T.G., Valgimigli, L., Culbertson, S., Rector, C.L., Jeong, B.S., Pratt, D.A. and Porter, N.A. (2010). Preparation and investigation of vitamin B6-derived aminopyridinol antioxidants. Chem. Eur. J., 16, 14106-14114. https://doi.org/10.1002/chem.201001382
  53. Steinberg, D., Parthasarathy, S., Carew, T.E., Khoo, J.C. and Witztum, J.L. (1989). Beyond cholesterol. Modifications of lowdensity lipoprotein that increase its atherogenicity. N. Engl. J. Med., 320, 915-924. https://doi.org/10.1056/NEJM198904063201407
  54. Upston, J.M., Kritharides, L. and Stocker, R. (2003). The role of vitamin E in atherosclerosis. Prog. Lipid. Res., 42, 405-422. https://doi.org/10.1016/S0163-7827(03)00024-9
  55. VanderVeen, L.A., Hashim, M.F., Shyr, Y. and Marnett, L.J. (2003). Induction of frameshift and base pair substitution mutations by the major DNA adduct of the endogenous carcinogen malondialdehyde. Proc. Natl. Acad. Sci. U S A, 100, 14247-14252. https://doi.org/10.1073/pnas.2332176100
  56. West, J.D. and Marnett, L.J. (2005). Alterations in gene expression induced by the lipid peroxidation product, 4-hydroxy-2- nonenal. Chem. Res. Toxicol., 18, 1642-1653. https://doi.org/10.1021/tx050211n
  57. Yoritaka, A., Hattori, N., Uchida, K., Tanaka, M., Stadtman, E.R. and Mizuno, Y. (1996). Immunohistochemical detection of 4-hydroxynonenal protein adducts in Parkinson disease. Proc. Natl. Acad. Sci. U S A, 93, 2696-2701. https://doi.org/10.1073/pnas.93.7.2696
  58. Zagol-Ikapitte, I., Masterson, T.S., Amarnath, V., Montine, T.J., Andreasson, K.I., Boutaud, O. and Oates, J.A. (2005). Prostaglandin H(2)-derived adducts of proteins correlate with Alzheimer’s disease severity, J. Neurochem., 94, 1140-1145. https://doi.org/10.1111/j.1471-4159.2005.03264.x

피인용 문헌

  1. ., Taurine) and Low Concentrations of Methylglyoxal Limit the Production of Advanced Glycation End-Products? vol.17, pp.4, 2014, https://doi.org/10.1089/rej.2014.1561
  2. A Japanese cross-sectional multicentre study of biomarkers associated with cardiovascular disease in smokers and non-smokers vol.20, pp.6-7, 2015, https://doi.org/10.3109/1354750X.2015.1096303
  3. Anti-atherosclerosis effect of pine nut oil in high-cholesterol and high-fat diet fed rats and its mechanism studies in human umbilical vein endothelial cells vol.24, pp.1, 2015, https://doi.org/10.1007/s10068-015-0043-x
  4. Overexpression of NPC1L1 in the livers of transgenic Bama miniature pigs accelerates lipid peroxidation vol.37, pp.2, 2015, https://doi.org/10.1007/s13258-014-0235-4
  5. Oxidative Stress and Neurobiology of Demyelination vol.53, pp.1, 2016, https://doi.org/10.1007/s12035-014-9041-x
  6. Genomic and functional integrity of the hematopoietic system requires tolerance of oxidative DNA lesions vol.130, pp.13, 2017, https://doi.org/10.1182/blood-2017-01-764274
  7. Scavenger Receptor A Mediates the Clearance and Immunological Screening of MDA-Modified Antigen by M2-Type Macrophages vol.19, pp.4, 2017, https://doi.org/10.1007/s12017-017-8461-y
  8. Detection of reactive aldehyde biomarkers in biological samples using solid-phase extraction pre-concentration and liquid chromatography with fluorescence detection vol.9, pp.12, 2017, https://doi.org/10.1039/C6AY03327J
  9. Dietary Linoleic Acid and Risk of Coronary Heart Disease: A Systematic Review and Meta-Analysis of Prospective Cohort Studies vol.130, pp.18, 2014, https://doi.org/10.1161/CIRCULATIONAHA.114.010236
  10. in type 2 diabetic rat pp.07302312, 2019, https://doi.org/10.1002/jcb.28437