DOI QR코드

DOI QR Code

플라즈마 처리가 ZnO 박막의 물리적 특성에 미치는 영향

Effects of the Plasma Treatment on the Physical Property of ZnO Thin Film

  • 조재원 (광운대학교 전자물리학과) ;
  • 정태영 (한국외국어대학교 전자물리학과) ;
  • 이석주 (한국외국어대학교 전자물리학과)
  • Cho, Jae-Won (Department of Electrophysics, Kwangwoon University) ;
  • Joung, Tae-Young (Department of Physics, Hankuk University of Foreign Studies) ;
  • Rhee, Seuk-Joo (Department of Physics, Hankuk University of Foreign Studies)
  • 투고 : 2010.12.22
  • 심사 : 2011.01.26
  • 발행 : 2011.03.01

초록

The characteristic changes in ZnO thin film according to H- and O- plasma treatments have been studied by Photoluminescence (PL) spectroscopy at room temperature. The red shift of UV peak by 20-30 meV in PL spectra after plasma treatments is identified, which indicates that there are changes in the binding energy of bound exciton and/or the movement of energy levels of lattice defects and impurities. The width of UV peak is decreased after plasma treatments, which is believed to be closely related to the crystal quality of ZnO film. The increase of UV peak intensity after H-plasma treatment is also observed, and this could mean that the radiative recombination is strengthened because the hydrogen atoms in the plasma diffuse into the film where they passivate and neutralize the defects and the impurities.

키워드

참고문헌

  1. Y.F. Chen, D.M. Bagnall, H. Koh, K. Park, K. Hiraga, Z. Zhu, and T. Yao, J. Appl. Phys. 84, 3912 (1998). https://doi.org/10.1063/1.368595
  2. W.Y. Liang, and A.D. Yoffe, Phys. Rev. Lett. 20, 59 (1968). https://doi.org/10.1103/PhysRevLett.20.59
  3. D.C. Reynolds, D.C. Look, B. Jogai, C.W. Litton, G. Cantwell, and W.C. Harsch, Phy. Rev. B. 60, 2340 (1999). https://doi.org/10.1103/PhysRevB.60.2340
  4. D. P. Yu, Z. G. Bai, Y. Ding, Q. L. Hang, H. Z. Zhang, J. J. Wang, Y. H. Zou, W. Qian, G. C. Xiong, H. T. Zhou, and S. Q. Feng, Appl. Phys. Lett. 72, 3458 (1998). https://doi.org/10.1063/1.121665
  5. Y. Li, G.S. Tompa, S. Liang, C. Gorla, C. Lu, and J. Doyle, J. Vac. Sci. Technol. A 15, 1663 (1997). https://doi.org/10.1116/1.580917
  6. P. Zu, Z. K. Tang, G. K. L. Wong, M. Kawasaki, A. Ohtomo, H. Koinuma, and Y. Segawa, Solid State Commun. 103, 459 (1997). https://doi.org/10.1016/S0038-1098(97)00216-0
  7. D. M. Bagnall, Y. F. Chen, M. Y. Shen, Z. Zhu, T. Goto, and T. Yao, J. Cryst. Growth 184/185, 605 (1998). https://doi.org/10.1016/S0022-0248(98)80127-9
  8. B. Lin, Z. Fu, and Y. Jia, Appl. Phys. Lett. 79, 943 (2001). https://doi.org/10.1063/1.1394173
  9. S.J. Pearton, J.C. Zolper, R.J. Shul, F. Ren, J. Appl. Phys. 86, 1 (1999). https://doi.org/10.1063/1.371145
  10. F.D. Auret, S.A. Goodman, M. Hayes, M.J. Legodi, H.A. Van Laarhoven, D.C. Look, Appl. Phys. Lett. 79, 3074 (200).
  11. J.I. Pankove and N.M Johnson eds., Hydrogen in semiconductors, Semiconductors and semimetals, 34, (Academic Press, 1991)
  12. C. Kittel, Introduction to Solid State Physics (John Wiley & Sons, 2005) p. 435.