References
- Daniel, P.D., Samuel, G.G., Carol, A.F., and David, W.C. (2010). Structures of metal-substituted human histone deacetylase 8 provide mech anistic inferences on biological function. Biochemistry 348, 5048-5056.
- Stephanie, L.G., Samuel, G.G., and Carol, A.F. (2006). Catalytic activity and inhibition of human histone deacetylase 8 is dependent on the identity of the active site metal ion. Biochemistry 45, 6170-6178. https://doi.org/10.1021/bi060212u
- Thangapandian S., John, S., Sakkiah, S., and Lee, K.W. (2010). Ligand and structure based pharmacophore modeling to facilitate novel histone deacetylase 8 inhibitor design. Eur J Med Chem 45, 4409-4417. https://doi.org/10.1016/j.ejmech.2010.06.024
- Dokmanovic, M., and Marks, P.A. (2005). Prospects: Histone deacetylase inhibitors. J Cell Biochem 96, 293-304. https://doi.org/10.1002/jcb.20532
- Hahnen, E., Hauke, J., Tränkle, C., Eyupoglu, I.Y., Wirth, B., and Blümcke, I. (2008). Histone deacetylase inhibitors: Possible implications for neurodegenerative disorders. Expert Opin Investig Drugs 17, 169-184. https://doi.org/10.1517/13543784.17.2.169
- Morrison, B.E., Majdzadeh, N., and D'Mello, S.R. (2007). Histone deacetylases: Focus on the nervous system. Cell Mol Life Sci 64, 2258-2269. https://doi.org/10.1007/s00018-007-7035-9
- Brichta, L., Hofmann, Y., Hahnen, E., Siebzehnrubl, F.A., Raschke, H., Blumcke, I., Eyupoglu, I.Y., and Wirth, B. (2003). Valproic acid increases the SMN2 protein level: A well-known drug as a potential therapy for spinal muscular atrophy. Hum Mol Genet 12, 2481-2489. https://doi.org/10.1093/hmg/ddg256
- Hockly, E., Richon, V.M., Woodman, B., Smith, D.L., Zhou, X., Rosa, E., Sathasivam, K., Ghazi-Noori, S., Mahal, A., Lowden, P.A., et al. (2003). Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington's disease. Proc Natl Acad Sci USA 100, 2041-2046. https://doi.org/10.1073/pnas.0437870100
- Adcock, I.M. (2007). HDAC inhibitors as anti-inflammatory agents. Br J Pharmacol 150, 829-831. https://doi.org/10.1038/sj.bjp.0707166
- Mottet, D., and Castronova, V. (2008). Histone deacetylases: Target enzymes for cancer therapy. Clin Exp Metastasis 25, 183-189. https://doi.org/10.1007/s10585-007-9131-5
- Pan, L., Lu, J., and Huang, B. (2007). HDAC inhibitors: A potential new category of anti-tumor agents. Cell Mol Immunol 4, 337-343.
- Paris, M., Porcelloni, M., Binaschi, M., and Fattori, D. (2008). Histone deacetylase inhibitors: From bench to clinic. J Med Chem 51, 1505-1529. https://doi.org/10.1021/jm7011408
- Benson, L.J., Phillips, J.A., Gu, Y., Parthun, M.R., Hoffman, C.S., and Annunziato, A.T. (2007). Properties of the type B histone acetyltransferase Hat1: H4 tail interaction, site preference, and involvement in DNA repair. J Biol Chem 282, 836-842. https://doi.org/10.1074/jbc.M607464200
- Thangapandian, S., John, S., Sakkiah, S., and Lee, K.W. (2010). Dockingenabled pharmacophore model for histone deacetylase 8 inhibitors and its application in anti-cancer drug discovery. J Mol Graph Model 29, 382-395. https://doi.org/10.1016/j.jmgm.2010.07.007
- Mai, A., Massa, S., Ragno, R., Esposito, M., Sbardella, G., Nocca, G., Scatena, R., Jesacher, F., Loidl, P., and Brosch, G. (2002). Binding mode analysis of 3-(4-benzoyl-1-methyl-1H-2-pyrrolyl)-N-hydroxy-2-propenamide: A new synthetic histone deacetylase inhibitor inducing histone hyperacetylation, growth inhibition, and terminal cell differentiation. J Med Chem 45, 1778-1784. https://doi.org/10.1021/jm011088+
- Vadivelan, S., Sinha, B.N., Rambabu, G., Boppana, K., and Jagarlapudi, S.A. (2008). Pharmacophore modeling and virtual screening studies to design some potential histone deacetylase inhibitors as new leads. J Mol Graph Model 26, 935-946. https://doi.org/10.1016/j.jmgm.2007.07.002
- Chen, Y., Jiang, Y., Zhou, J., Yu, Q., and You, Q. (2008). Identification of ligand features essential for HDACs inhibitors by pharmacophore modeling. J Mol Graph Model 26, 1160-1168. https://doi.org/10.1016/j.jmgm.2007.10.007
- Chen, Y., Li, H., Tang, W., Zhu, C., Jiang, Y., Zou, J., Yu, Q., and You, Q. (2009). 3D-QSAR studies of HDACs inhibitors using pharmacophorebased alignment. Eur J Med Chem 44, 1-9. https://doi.org/10.1016/j.ejmech.2008.03.002
- Kramer, O.H., Gottlicher, M., and Heinzel, T. (2001). Histone deacetylase as a therapeutic target. Trends Endocrinol Metab 12, 294-300. https://doi.org/10.1016/S1043-2760(01)00438-6
- Lee, S.C., Bottaro, A., and Insel, R.A. (2003). Activation of terminal B cell differentiation by inhibition of histone deacetylation. Mol Immunol 39, 923-932. https://doi.org/10.1016/S0161-5890(03)00029-4
- Kapustin, G.V., Fejer, G., Gronlund, J.L., McCafferty, D.G., Seto, E., and Etzkorn, F.A. (2003). Phosphorus-based SAHA analogues as histone deacetylase inhibitors. Org Lett 5, 3053-3056. https://doi.org/10.1021/ol035056n
- Gregoretti, I., Lee, Y.M., and Goodson, H.V. (2004). Molecular evolution of the histone deacetylase family: Functional implications of phylogenetic analysis. J Mol Biol 338, 17-31. https://doi.org/10.1016/j.jmb.2004.02.006
- Fischle, W., Kiermer, V., Dequiedt, F., and Verdin, E. (2001). The emerging role of class II histone deacetylases. Biochem Cell Biol 79, 337-348. https://doi.org/10.1139/o01-116
- Kozikowski, A.P., Chen, Y., Gaysin, A., Chen, B., D'Annibale, M.A., Suto, C.M., and Langley, B.C. (2007). Functional differences in epigenetic modulators-superiority of mercaptoacetamide-based histone deacetylase inhibitors relative to hydroxamates in cortical neuron neuroprotection studies. J Med Chem 50, 3054-3061. https://doi.org/10.1021/jm070178x
- Marks, P.A., and Breslow, R. (2007). Dimethyl sulfoxide to vorinostat: Development of this histone deacetylase inhibitor as an anticancer drug. Nat Biotechnol 25, 84-90. https://doi.org/10.1038/nbt1272
- Xu, W.S., Parmigiani, R.B., and Marks, P.A. (2007). Histone deacetylase inhibitors: Molecular mechanisms of action. Oncogene 26, 5541-5552. https://doi.org/10.1038/sj.onc.1210620
- Dokmanovic, M., Clarke, C., and Marks, P.A. (2007). Histone deacetylase inhibitors: Overview and perspectives. Mol Cancer Res 5, 981-989. https://doi.org/10.1158/1541-7786.MCR-07-0324
- Butler, K.V., and Kozikowski, A.P. (2008). Chemical origins of isoform selectivity in histone deacetylase inhibitors. Curr Pharm Des 14, 505- 528. https://doi.org/10.2174/138161208783885353
- Estiu, G., Greenberg, E., Harrison, C.B., Kwiatkowski, N.P., Mazitschek, R., Bradner, J.E., and Wiest, O. (2008). Structural origin of selectivity in class II-selective histone deacetylase inhibitors. J Med Chem 51, 2898- 2906. https://doi.org/10.1021/jm7015254
- Khan, N., Jeffers, M., Kumar, S., Hackett, C., Boldog, F., Khramtsov, N., Qian, X., Mills, E., Berghs, S.C., Carey, N., et al. (2008). Determination of the class and isoform selectivity of small-molecule histone deacetylase inhibitors. Biochem J 409, 581-589. https://doi.org/10.1042/BJ20070779
- Moradei, O., Vaisburg, A., and Martell, R.E. (2008). Histone deacetylase inhibitors in cancer therapy: New compounds and clinical update of benzamide-type agents. Curr Top Med Chem 8, 841-858. https://doi.org/10.2174/156802608784911581
- Shankar, S., and Srivastava, R.K. (2008). Histone deacetylase inhibitors: Mechanisms and clinical significance in cancer: HDAC inhibitor-induced apoptosis. Adv Exp Med Biol 615, 261-298. https://doi.org/10.1007/978-1-4020-6554-5_13
- Jones, P., Bottomley, M.J., Carfí, A., Cecchetti, O., Ferrigno, F., Lo Surdo, P., Ontoria, J.M., Rowley, M., Scarpelli, R., Schultz-Fademrecht, C., et al. (2008). 2-Trifluoroacetylthiophenes, a novel series of potent and selective class II histone deacetylase inhibitors. Bioorg Med Chem Lett 18, 3456-3461. https://doi.org/10.1016/j.bmcl.2008.02.026
- Schemies, J., Sippl, W., and Jung, M. (2009). Histone deacetylase inhibitors that target tubulin. Cancer Lett 280, 222-232. https://doi.org/10.1016/j.canlet.2009.01.040
- Marks, P.A., and Xu, W.S. (2009). Histone deacetylase inhibitors: Potential in cancer therapy. J Cell Biochem 107, 600-608. https://doi.org/10.1002/jcb.22185
- Marks, P.A. (2007). Discovery and development of SAHA as an anticancer agent. Oncogene 26, 1351-1356. https://doi.org/10.1038/sj.onc.1210204
- Bolden, J.E., Peart, M.J., and Johnstone, R.W. (2006). Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 5, 769-784. https://doi.org/10.1038/nrd2133
- Vannini, A., Volpari, C., Gallinari, P., Jones, P., Mattu, M., Carfí, A., De Francesco, R., Steinkühler, C., and Di Marco, S. (2007). Substrate binding to histone deacetylases as shown by the crystal structure of the HDAC8-substrate complex. EMBO Rep 8, 879-884. https://doi.org/10.1038/sj.embor.7401047
- Brodeur, G.M. (2003). Neuroblastoma: Biological insights into a clinical enigma. Nat Rev Cancer 3, 203-216. https://doi.org/10.1038/nrc1014
- Oehme, I., Deubzer, H.E., Wegener, D., Pickert, D., Linke, J.P., Hero, B., Kopp-Schneider, A., Westermann, F., Ulrich, S.M., von Deimling, A., et al. (2009). Histone deacetylase 8 in neuroblastoma tumorigenesis. Clin Cancer Res 15, 91-99. https://doi.org/10.1158/1078-0432.CCR-08-0684
- Durst, K.L., Lutterbach, B., Kummalue, T., Friedman, A.D., and Hiebert, S.W. (2003). The inv(16) fusion protein associates with corepressors via a smooth muscle myosin heavy-chain domain. Mol Cell Biol 23, 607- 619. https://doi.org/10.1128/MCB.23.2.607-619.2003
- Gu, W., Nusinzon, I., Smith, R.D.Jr., Horvath, C.M., and Silverman, R.B. (2006). Carbonyl-sulfurcontaining analogs of suberoylanilide hydroxamic acid: Potent inhibition of histone deacetylases. Bioorg Med Chem 14, 3320-3329. https://doi.org/10.1016/j.bmc.2005.12.047
- Wu, T.Y., Hassig, C., Wu, Y., Ding, S., and Schultz, P.G. (2004). Design, synthesis, and activity of HDAC inhibitors with a N-formyl hydroxylamine head group. Bioorg Med Chem Lett 14, 449-453. https://doi.org/10.1016/j.bmcl.2003.10.055
- Jeffrey, M.B., Zuomei, L., Daniel, D., and Claire, B. (2004). Methods for specifically inhibiting histone-7 and 8. Patents US 2004/0072770 A1.
- Dizhong, C., Weiping, D., Kand, S., Hong, Y.S., Eric, T.S., Niefang, Y., and Yong, Z. (2007). Benzimidazole derivatives: Preparation and pharmaceutical applications. Patents US 2007/0043043 A1.
- Walter, S., Haishan, W., and Zheng, Y. (2007). Biaryl linked hydroxamates: Preparation and pharmaceutical applications. Patents US 2007/0167499 A1.
- Ze-Yi, L., Haishan, W., and Yan, Z. (2008). Aclyurea connected and sulfonamide connected hydroxamates. Patents US 2008/0070954 A1.
- Joseph, J.B., and Sriram, B. (2008). Uses of selective inhibitors of HDAC8 for treatment of T-cell proliferative disorders. Patents US 2008/0112889 A1.
- Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J., Swaminathan, S., and Karplus, M. (1983). CHARMM: A program for macromolecular energy, minimization, and dynamics calculations. J Comput Chem 4, 187-217. https://doi.org/10.1002/jcc.540040211
- Tetko, I. V. (2005). Computing chemistry on the web. Drug Discov Today 10, 1497-1500. https://doi.org/10.1016/S1359-6446(05)03584-1
- Caballero, J., Fernández, L., Garriga, M., Abreu, J.I., Collina, S., and Fernández, M. (2007). Proteometric study of ghrelin receptor function variations upon mutations using amino acid sequence autocorrelation vectors and genetic algorithm-based least square support vector machines. J Mol Graph Model 26, 166-178. https://doi.org/10.1016/j.jmgm.2006.11.002
- So, S.S., and Karplus, M. (1996). Genetic neural networks for quantitative structure-activity relationships: improvements and application of benzodiazepine affinity for benzodiazepine/GABAA receptors. J Med Chem 39, 1521-1530. https://doi.org/10.1021/jm9507035
- Holland, J.H. (1992). Adaptation in Natural and Artificial Systems, 2nd Edition, (Cambridge: MIT Press). pp. 15-18.
- Yujie, D., Qiang, W., Xiuli, Z., Shiru, Jia., Heng, Z., Dacheng, F., and Peng, Yu. (2010). Molecular docking and QSAR study on steroidal compounds as aromatase inhibitors. Eur J Med Chem 45, 5612-5620. https://doi.org/10.1016/j.ejmech.2010.09.011