DOI QR코드

DOI QR Code

Analysis of Void Effects on Mechanical Property of BGA Solder Joint

솔더 접합부에 생성된 Void의 JEDEC 규격과 기계적 특성에 미치는 영향

  • 이종근 (성균관대학교 신소재공학과) ;
  • 김광석 (성균관대학교 나노과학기술협동학부) ;
  • 윤정원 (삼성전자 종합기술원) ;
  • 정승부 (성균관대학교 신소재공학부)
  • Received : 2011.12.19
  • Accepted : 2011.12.28
  • Published : 2011.12.30

Abstract

Understanding the void characterization in the solder joints has become more important because of the application of lead free solder materials and its reliability in electronic packaging technology. According to the JEDEC 217 standard, it describes void types formed in the solder joints, and divides into some categories depending on the void position and formation cause. Based on the previous papers and the standards related to the void, reliability of the BGA solder joints is determined by the size of void, as well as the location of void inside the BGA solder ball. Prior to reflow soldering process, OSP(organic surface preservative) finished Cu electrode was exposed under $85^{\circ}C$/60%RH(relative humidity) for 168 h. Voids induced by the exposure of $85^{\circ}C$/60%RH became larger and bigger with increasing aging times. The void position has more influence on mechanical strength property than the amount of void growth does.

Keywords

References

  1. J. W. Yoon, W. C. Moon and S. B. Jung, "Interfacial Reaction of ENIG/Sn-Ag-Cu/ENIG Sandwich Solder Joint during Isothermal Aging", Microelectron. Eng., 83, 2329 (2006). https://doi.org/10.1016/j.mee.2006.10.027
  2. J. H. Ahn, K. S. Kim, Y. C. Lee, Y. Kim and S. B. Jung, "Regulation in Shear Test Method for BGA of Flip-chip Packages", J. Microelectron. Packag. Soc., 17(3), 1 (2010).
  3. J. M. Koo, C. Y. Lee and S. B. Jung, "Effect of Reflow Number on Mechanical and Electrical Properties of Ball Grid Array (BGA) Solder Joints", J. Microelectron. Packag. Soc., 14(4), 71 (2007).
  4. M. Abtew and G. Selvaduray, "Lead free Solders in Microelectronics", Mat. Sci. .Eng. R, 27, 95 (2000). https://doi.org/10.1016/S0927-796X(00)00010-3
  5. J. Glazer, "Microstructure and Mechanical Properties of Pbfree Solder Alloys of Low-cost Electronic Assembly: a Review", J. Electron. Mater., 23, 693 (1994). https://doi.org/10.1007/BF02651361
  6. L. J. Ladani , "Damage Initiation and Propagation in Voided Joints Modeling and Experiment", J. Electron. Packag., 130(1), 011008 (2008). https://doi.org/10.1115/1.2837562
  7. P. Liu, P. Yao and J. Liu, "Evolutions of the Interface and Shear Strength between SnAgCu-xNi Solder and Cu Substrate during Isothermal Aging at $150{^{\circ}C}$", J. Alloys Compd., 486, 474 (2009). https://doi.org/10.1016/j.jallcom.2009.06.171
  8. JESD 217, Test Methods to Characterize Voiding in Pre-SMT Ball Grid Array Packages
  9. J. Gong and I. C. Ume, "Void Inspection in Lead-free Solder Bumps on Ball Grid Array (BGA) Packages Using Laser Ultrasound Technique", Proc. ASME 2011 International Mechanical Engineering Congress & Exposition, Denver, ASME (2011).
  10. R. Aspandiar, "Voids in Solder Joints", J. SMT, 19, 28 (2006).
  11. Z. Mei, M. Ahmad, M. Hu and G. Ramakrishna, "Kirkendall Voids at Cu/solder Interface and Their Effects on Solder Joint Reliability", Proc. 55th Electronic Components and Technology Conference (ECTC), Orlando, 415, IEEE Components Packaging and Manufacturing Technology Society (CPMT) (2005).
  12. IPC-7095B, Design and Assembly Process Implementation for BGAs
  13. J. W. Kim and S. B. Jung, "Effects of Void Formation within the Pb-free BGA Solder Balls on the Mechanical Joint Strength", Mater. Sci. Forum, 510-511, 546 (2006). https://doi.org/10.4028/www.scientific.net/MSF.510-511.546
  14. T. H. You, Y. S. Kim, W. W. Jung, J. T. Moon and H. M. Choe, "Effect of Surface Finish on the Fracture Behavior of Sn-Ag-Cu Solder Joints during High-strain Rate Loading", J. Alloys Compd., 486, 242 (2009). https://doi.org/10.1016/j.jallcom.2009.07.085
  15. Z. Tang and F.G. Shi, "Effects of Preexisting Voids on Electromigration Failure of Flip Chip Solder Bumps", Microelectron. J., 32, 605 (2001). https://doi.org/10.1016/S0026-2692(01)00033-7
  16. Q. Yu, T. Shibutani, Y. Kobayashi and M, Shiratori, "The Effect of Voids on Thermal Reliability of BGA Lead Free Solder Joint and Reliability Detecting Standard", Proc. Thermal and Thermomechanical Phenomena in Electronics Systems (ITHERM), San Diego, 1024, IEEE Components Packaging and Manufacturing Technology Society (CPMT) (2006).
  17. Q. Yu, T. Shibutani, D. S. Kim, Y. Kobayashi, J. Yang and M. Shiratori, "Effect of Precess-induced Voids on Isothermal Fatigue Resistance of CSP Lead-free Solder Joints", Microelectron Reliab., 48, 431 (2008). https://doi.org/10.1016/j.microrel.2007.08.008
  18. M. Yunus, K. Srihari, J. M. Pitarresi and A. Primavera, "Effect of Voids on the Reliability of BGA/CSP Solder Joints", Microelectron. Reliab., 43, 2077 (2003). https://doi.org/10.1016/S0026-2714(03)00124-0
  19. M. H. R. Jen, L. C. Liu and Y. S. Lai, "Electromigration on Void Formation of Sn3Ag1.5Cu FCBGA Solder Joints", Microelectron. Reliab., 49, 734 (2009). https://doi.org/10.1016/j.microrel.2009.04.008
  20. W. Peng, E. Monlevade and M. E. Marques, "Effect of Thermal Aging on the Interfacial Structure of SnAgCu Solder Joints on Cu", Microelectron. Reliab., 47, 2161 (2007). https://doi.org/10.1016/j.microrel.2006.12.006
  21. J. Yu and J. Y. Kim, "Effects of Residual S on Kirkendall Void Formation at Cu/Sn-3.5Ag Solder Joints", Acta Mater., 56, 5514 (2008). https://doi.org/10.1016/j.actamat.2008.07.022
  22. J. Y. Kim, J. Yu and S. H. Kim, "Effects of Sulfide-forming Element Additions on the Kirkendall Void Formation and Drop Impact Reliability of Cu/Sn-3.5Ag Solder Joints", Acta Mater., 57, 2001 (2009).
  23. J. W. Yoon, B. I. Noh, Y. H. Lee, H. S. Lee and S. B. Jung, "Effects of Isothermal Aging and Temperature-humidity Treatment of Substrate on Joint Reliability of Sn-3.0Ag- 0.5Cu/OSP-finished Cu CSP Solder Joint", Microelectron. Reliab., 48, 1864 (2008). https://doi.org/10.1016/j.microrel.2008.07.065
  24. Y. H. Lin, Y. C. Hu, C. M. Tsai, C. R. Kao and K. N. Tu, "In Situ Observation of the Void Formation-and-propagation Mechanism in Solder Joints under Current-stressing", Acta Mater., 53, 2029 (2005). https://doi.org/10.1016/j.actamat.2005.01.014
  25. Y. W. Wang, Y. W. Lin and C. R. Kao, "Inhibiting the Formation of Microvoids in $Cu_{3}Sn$ by Additions of Cu to Solders", J. Alloys Compd., 493, 233 (2010). https://doi.org/10.1016/j.jallcom.2009.12.062
  26. P. J. Shang, A. Q. Liu, D. X. Li and J. K. Shang, "Bi-induced Voids at the $Cu_{3}Sn$/Cu Interface in Eutectic SnBi/Cu Solder Joints", Scripta Mater., 58, 409 (2008). https://doi.org/10.1016/j.scriptamat.2007.10.025
  27. C. T. Lin, C. S. His, M. C. Wang, T. C. Chang and M. K. Liang, "Interfacial Microstructures and Solder Joint Strengths of the Sn-8Zn-3Bi and Sn-9Zn-1Al Pb-free Solder Pastes on OSP Finished Printed Circuit Boards", J. Alloys Compd., 459, 225 (2008). https://doi.org/10.1016/j.jallcom.2007.05.029
  28. J. J. Sundelin, S. T. Nurmi, T. K. Lepisto and E. O. Ristolainen, "Mechanical and Microstructural Properties of SnAgCu Solder Joints", Mater. Sci. Eng. A, 420, 55 (2006). https://doi.org/10.1016/j.msea.2006.01.065
  29. L. Ciampolini, M. Ciappa, P. Malberti, P. Regli and W. Fichtner, "Modelling Thermal Effects of Large Contiguous Voids in Solder Joints", Microelectron. J., 30, 1115 (1999). https://doi.org/10.1016/S0026-2692(98)00097-4
  30. B. Zhang, H. Ding and X. Sheng, "Reliability Study of Boardlevel Lead-free Interconnections under Sequential Thermal Cycling and Drop Impact", Microelectron. Reliab., 49, 530 (2009). https://doi.org/10.1016/j.microrel.2009.02.024
  31. Y. Yang, L. Lu, C. Yu and Y. Li, "Void Formation at the Interface in Sn/Cu Solder Joints", Microelectron. Reliab., 51. 2314 (2011). https://doi.org/10.1016/j.microrel.2011.06.026

Cited by

  1. 유기첨가제 및 전류밀도에 의한 Sn 솔더 범프의 미세조직 형성 연구 vol.28, pp.1, 2021, https://doi.org/10.6117/kmeps.2021.28.1.047