Measurement of Trabecular Bone Parameters in Porcine Vertebral Bodies Using Multidetector CT: Evaluation of Reproducibility of 3-Dimensional CT Histomorphometry

다중검출기 CT를 이용한 돼지 척추뼈의 미세골구조분석: 삼차원 CT 조직형태계측법의 재현성 평가

  • An, Sang-Bu (Department of Radiology, National Cancer Center) ;
  • Hong, Sung-Hwan (Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine) ;
  • Goo, Jin-Mo (Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine) ;
  • Moon, Kyung-Chul (Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine) ;
  • Kim, Kwang-Gi (Department of Biomedical Engineering, Division of Basic and Applied Sciences, National Cancer Center)
  • 안상부 (국립암센터 영상의학과) ;
  • 홍성환 (서울대학교병원 영상의학과, 서울대학교 의과대학 영상의학교실) ;
  • 구진모 (서울대학교병원 영상의학과, 서울대학교 의과대학 영상의학교실) ;
  • 문경철 (서울대학교병원 병리과, 서울대학교 의과대학 병리학교실) ;
  • 김광기 (국립암센터 의공학연구과)
  • Published : 2011.05.01

Abstract

Purpose: To evaluate the reproducibility of 3-dimensional histomorphometry for the microarchitecture analysis of trabecular bone parameters using multidetector computed tomography (MDCT). Materials and Methods: Thirty-six specimens from porcine vertebral bodies were imaged five times with a 64-detector row MDCT system using the same scan protocols. Locations of the specimens were nearly identical through the scans. Three-dimensional structural parameters of trabecular bone were derived from the five data sets using image analyzing software. The features measured by the analysis programs were trabecular bone volume, trabecular bone volume/tissue volume, trabecular thickness, trabecular separation, trabecular number, trabecular bone pattern factor, structural model index. Results: The structural trabecular parameters showed excellent reproducibility through repeated scanning. Intraclass correlation coefficients of all seven structural parameters were in the range of 0.998 to 1.000. Coefficients of variation of the six structural parameters, excluding structural model index, were not over 1.6%. Conclusion: The measurement of the trabecular structural parameters using multidetector CT and three-dimensional histomophometry analysis program was validated and showed excellent reproducibility. This method could be used as a noninvasive and easily available test in a clinical setting.

목적: 다중검출기 CT를 이용한 3차원 조직형태계측법을 통해 미세골구조 분석의 재현성을 평가하고자 하였다. 대상과 방법: 해면골구조가 비교적 잘 보이는 돼지 척추골 36개를 선별하여 CT 스캔을 시행하였다. 64채널 다중검출기 CT를 이용하여 각 검체에 대해 다섯 번씩 반복 스캔하였고 이때 검체의 위치와 스캔 파라미터(parameters)는 동일하게 유지하였다. 각각의 영상 데이터를 소프트웨어를 이용하여 분석함으로써 3차원 미세골구조를 측정하고 측정치를 비교하여 미세골구조 분석의 재현성을 평가하였다. 측정한 3차원 미세골구조 지표들은 trabecular bone volume, trabecular bone volume/tissue volume, trabecular thickness, trabecular separation, trabecular number, trabecular bone pattern factor, structural model index였다. 결과: 미세골구조 지표들은 반복스캔에서 등급 내 상관계수가 0.998 - 1.000으로 측정되었고 structural model index를 제외한 6개 지표에서는 각각의 변동계수의 평균이 1.6%를 넘지않아 우수한 재현성을 보였다. 결론: 다중검출기 CT를 이용한 3차원 조직형태계측법은 미세골구조 분석에서 매우 재현성이 높은 검사임을 확인하였다. 이 방법은 임상 영역에서도 비침습적으로 쉽게 적용할 수 있을 것으로 생각한다.

Keywords

References

  1. Carballido-Gamio J, Majumdar S. Clinical utility of microarchitecture measurements of trabecular bone. Curr Osteoporos Rep 2006;4:64-70 https://doi.org/10.1007/s11914-006-0004-7
  2. Patel PV, Prevrhal S, Bauer JS, Phan C, Eckstein F, Lochmuller EM, et al. Trabecular bone structure obtained from multislice spiral computed tomography of the calcaneus predicts osteoporotic vertebral deformities. J Comput Assist Tomogr 2005;29:246-253 https://doi.org/10.1097/01.rct.0000158085.00206.5d
  3. Keaveny TM, Morgan EF, Niebur GL, Yeh OC. Biomechanics of trabecular bone. Annu Rev Biomed Eng 2001;3:307-333 https://doi.org/10.1146/annurev.bioeng.3.1.307
  4. Chappard D, Retailleau-Gaborit N, Legrand E, Basle MF, Audran M. Comparison insight bone measurements by histomorphometry and microCT. J Bone Miner Res 2005;20:1177-1184 https://doi.org/10.1359/JBMR.050205
  5. Chappard D, Guggenbuhl P, Legrand E, Basle MF, Audran M. Texture analysis of X-ray radiographs is correlated with bone histomorphometry. J Bone Miner Metab 2005;23:24-29 https://doi.org/10.1007/s00774-004-0536-9
  6. Boutry N, Cortet B, Dubois P, Marchandise X, Cotten A. Trabecular bone structure of the calcaneus: preliminary in vivo MR imaging assessment in men with osteoporosis. Radiology 2003;227:708-717 https://doi.org/10.1148/radiol.2273020420
  7. Krug R, Carballido-Gamio J, Burghardt A, Haase S, Sedat J, Moss W, et al. Wavelet Based Characterization of vertebral trabecular bone structure from MR images of specimen at 3 tesla compared to microCT measurements. Conf Proc IEEE Eng Med Biol Soc 2005;7:7040-7043
  8. Lasbleiz J, Burgun A, Marin F, Rolland Y, Duvauferrier R. Vertebral trabecular network analysis on CT images. J Radiol 2005;86:645-649 https://doi.org/10.1016/S0221-0363(05)81420-9
  9. Cortet B, Chappard D, Boutry N, Dubois P, Cotten A, Marchandise X. Relationship between computed tomographic image analysis and histomorphometry for microarchitectural characterization of human calcaneus. Calcif Tissue Int 2004;75:23-31 https://doi.org/10.1007/s00223-004-0086-0
  10. Link TM, Vieth V, Stehling C, Lotter A, Beer A, Newitt D, et al. High-resolution MRI vs multislice spiral CT: which technique depicts the trabecular bone structure best? Eur Radiol 2003;13:663-671
  11. Torres A, Lorenzo V, Gonzalez-Posada JM. Comparison of histomorphometry and computerized tomography of the spine in quantitating trabecular bone in renal osteodystrophy. Nephron 1986;44:282-287 https://doi.org/10.1159/000184007
  12. Genant HK, Delmas PD, Chen P, Jiang Y, Eriksen EF, Dalsky GP, et al. Severity of vertebral fracture reflects deterioration of bone microarchitecture. Osteoporos Int 2007;18:69-76 https://doi.org/10.1007/s00198-006-0199-6
  13. Jiang SD, Jiang LS, Dai LY. Spinal cord injury causes more damage to bone mass, bone structure, biomechanical properties and bone metabolism than sciatic neurectomy in young rats. Osteoporos Int 2006;17:1552-1561 https://doi.org/10.1007/s00198-006-0165-3
  14. Gustafsson BI, Westbroek I, Waarsing JH, Waldum H, Solligard E, Brunsvik A, et al. Long-term serotonin administration leads to higher bone mineral density, affects bone architecture, and leads to higher femoral bone stiffness in rats. J Cell Biochem 2006;97:1283-1291 https://doi.org/10.1002/jcb.20733
  15. Byers BA, Guldberg RE, Hutmacher DW, Garcia AJ. Effects of Runx2 genetic engineering and in vitro maturation of tissue-engineered constructs on the repair of critical size bone defects. J Biomed Mater Res A 2006;76:646-655
  16. Trisi P, Rebaudi A, Calvari F, Lazzara RJ. Sinus graft with biogran, autogenous bone, and PRP: a report of three cases with histology and micro-CT. Int J Periodontics Restorative Dent 2006;26:113-125
  17. Vigorita VJ. The bone biopsy protocol for evaluating osteoporosis and osteomalacia. Am J Surg Pathol 1984;8:925-930 https://doi.org/10.1097/00000478-198412000-00005
  18. Link TM, Majumdar S, Grampp S, Guglielmi G, van Kuijk C, Imhof H, et al. Imaging of trabecular bone structure in osteoporosis. Eur Radiol 1999;9:1781-1788 https://doi.org/10.1007/s003300050922
  19. Hildebrand T, Ruegsegger P. A new method for the model-independent assessment of thickness in three-dimensional images. J Microsc 1997;185:67-75 https://doi.org/10.1046/j.1365-2818.1997.1340694.x
  20. Hahn M, Vogel M, Pompesius-Kempa M, Delling G. Trabecular bone pattern factor-a new parameter for simple quantification of bone microarchitecture. Bone 1992;13:327-330 https://doi.org/10.1016/8756-3282(92)90078-B
  21. Kleerekoper M, Villanueva AR, Stanciu J, Rao DS, Parfitt AM. The role of three-dimensional trabecular microstructure in the pathogenesis of vertebral compression fractures. Calcif Tissue Int 1985;37:594-597 https://doi.org/10.1007/BF02554913
  22. Ross PD, Wasnich RD, Davis JW. Fracture prediction models for osteoporosis prevention. Bone 1990;11:327-331 https://doi.org/10.1016/8756-3282(90)90088-G
  23. Ross PD, Davis JW, Vogel JM, Wasnich RD. A critical review of bone mass and the risk of fractures in osteoporosis. Calcif Tissue Int 1990;46:149-161 https://doi.org/10.1007/BF02555036
  24. Link TM, Vieth V, Matheis J, Newitt D, Lu Y, Rummeny EJ, et al. Bone structure of the distal radius and the calcaneus vs BMD of the spine and proximal femur in the prediction of osteoporotic spine fractures. Eur Radiol 2002;12:401-408 https://doi.org/10.1007/s003300101127
  25. Wehrli FW, Song HK, Saha PK, Wright AC. Quantitative MRI for the assessment of bone structure and function. NMR Biomed 2006;19:731-764 https://doi.org/10.1002/nbm.1066
  26. Boutroy S, Bouxsein ML, Munoz F, Delmas PD. In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography. J Clin Endocrinol Metab 2005;90:6508-6515 https://doi.org/10.1210/jc.2005-1258
  27. Chen P, Miller PD, Recker R, Resch H, Rana A, Pavo I, et al. Increases in BMD correlate with improvements in bone microarchitecture with teriparatide tretment in postmenopausal women with osteoporosis. J Bone Miner Res 2007;22:1173-1180 https://doi.org/10.1359/jbmr.070413
  28. Benhamou CL. Effects of osteoporosis medications on bone quality. Joint Bone Spine 2007;74:39-47 https://doi.org/10.1016/j.jbspin.2006.06.004
  29. Bredella MA, Misra M, Miller KK, Madisch I, Sarwar A, Cheung A, et al. Distal radius in adolescent girls with anorexia nervosa: trabecular structure analysis with high-resolution flat-panel volume CT. Radiology 2008;249:938-946 https://doi.org/10.1148/radiol.2492080173