DOI QR코드

DOI QR Code

COMPARISON OF VENTRICULAR DYSSYNCHRONY ACCORDING TO THE POSITION OF RIGHT VENTRICULAR PACING ELECTRODE: A MULTI-CENTER PROSPECTIVE ECHOCARDIOGRAPHIC STUDY

  • Cho, Goo-Yeong (Cardiovascular Center, Seoul National University Bundang Hospital) ;
  • Kim, Mi-Jeong (Division of Cardiology, Incheon St. Mary's Hospital, The Catholic University Korea) ;
  • Park, Jae-Hyeong (Department of Internal Medicine, Chungnam National University School of Medicine) ;
  • Kim, Hyun-Sook (Division of Cardiology, Hallym University College of Medicine) ;
  • Youn, Hyun-Ju (Heart Center, Chonnam National University Medical School) ;
  • Kim, Kye-Hun (Heart Center, Chonnam National University Medical School) ;
  • Song, Jae-Kwan (Division of Cardiology, Asan Medical Center, University of Ulsan College of Medicine)
  • Published : 2011.03.27

Abstract

Background: Conventional pacemaker implantation induces left ventricular (LV) dyssynchrony, which might affect the LV function. We sought to evaluate the impact of different right ventricular (RV) pacing sites on the LV dyssynchrony and performance. Methods: Comprehensive echocardiographic evaluation including the atrio-ventricular, inter- and intra-ventricular dyssynchrony based on M-mode, conventional Doppler and tissue Doppler imaging (TDI) was done before and immediately after (< 7 days) pacemaker implantation. For the LV performance, LV ejection fraction, longitudinal peak systolic velocity at the mitral annulus (S') annular or mean longitudinal velocity of the 6 basal segments (Sm) were used. These results were compared with those of 15 age matched controls. Results: A total of 79 patients (48 females, mean age 63 ${\pm}$ 12 years) underwent RV pacing at the apex (n = 45, group I) or the septum (n = 34, group II). After pacemaker implantation, the QRS duration was significantly increased in both groups, but the change was greater in group I (57.1 ${\pm}$ 28.3 versus 32.8 ${\pm}$ 40.5 msec). Both the S' and Sm were lower in pacing groups than those in controls and Sm was significantly higher in group II (4.2 ${\pm}$ 1.0 versus 4.9 ${\pm}$ 1.3 m/sec) than group I despite a similar LV ejection fraction. The aortic pre-ejection time and septal to posterior wall motion delay in patients with pacemaker were longer compared to normal controls, but there were no significant differences. Both the TDI velocity and strain analysis showed no difference of the dyssynchrony indices between the two groups, despite a higher tendency of Doppler strain dyssynchrony indices in the RV apical pacing group compared to those of the control. Conclusion: Despite the marked increase of the QRS duration after pacing, M-mode, Doppler and TDI failed to demonstrate any difference according to the pacing sites. The long-term effect of the longitudinal contraction being less affected and a smaller increase of the QRS duration in the RV septal pacing group needs to be confirmed in a longitudinal follow-up study.

Keywords

References

  1. Daggett WM, Bianco JA, Powell WJ Jr, Austen WG. Relative contributions of the atrial systoleventricular systole interval and of patterns of ventricular activation to ventricular function during electrical pacing of the dog heart. Circ Res 1970;27:69-79.
  2. Tops LF, Schalij MJ, Holman ER, van Erven L, van der Wall EE, Bax JJ. Right ventricular pacing can induce ventricular dyssynchrony in patients with atrial fibrillation after atrioventricular node ablation. J Am Coll Cardiol 2006;48:1642-8.
  3. Manolis AS. The deleterious consequences of right ventricular apical pacing: time to seek alternate site pacing. Pacing Clin Electrophysiol 2006;29:298-315.
  4. Padeletti L, Lieberman R, Schreuder J, Michelucci A, Collella A, Pieragnoli P, Ricciardi G, Eastman W, Valsecchi S, Hettrick DA. Acute effects of His bundle pacing versus left ventricular and right ventricular pacing on left ventricular function. Am J Cardiol 2007;100:1556-60.
  5. Kypta A, Steinwender C, Kammler J, Leisch F, Hofmann R. Longterm outcomes in patients with atrioventricular block undergoing septal ventricular lead implantation compared with standard apical pacing. Europace 2008;10:574-9.
  6. Gorcsan J, III. Role of echocardiography to determine candidacy for cardiac resynchronization therapy. Curr Opin Cardiol 2008;23:16-22.
  7. Cleland JG, Daubert JC, Erdmann E, Freemantle N, Gras D, Kappenberger L, Tavazzi L. The effect of cardiac resynchronization on morbidity and mortality in heart failure. N Engl J Med 2005;352:1539-49.
  8. Pitzalis MV, Iacoviello M, Romito R, Massari F, Rizzon B, Luzzi G, Guida P, Andriani A, Mastropasqua F, Rizzon P. Cardiac resynchronization therapy tailored by echocardiographic evaluation of ventricular asynchrony. J Am Coll Cardiol 2002;40:1615-22.
  9. Bax JJ, Bleeker GB, Marwick TH, Molhoek SG, Boersma E, Steendijk P, van der Wall EE, Schalij MJ. Left ventricular dyssynchrony predicts response and prognosis after cardiac resynchronization therapy. J Am Coll Cardiol 2004;44:1834-40.
  10. Yu CM, Fung JW, Zhang Q, Chan CK, Chan YS, Lin H, Kum LC, Kong SL, Zhang Y, Sanderson JE. Tissue Doppler imaging is superior to strain rate imaging and postsystolic shortening on the prediction of reverse remodeling in both ischemic and nonischemic heart failure after cardiac resynchronization therapy. Circulation 2004;110:66-73.
  11. Miyazaki C, Powell BD, Bruce CJ, Espinosa RE, Redfield MM, Miller FA, Hayes DL, Cha YM, Oh JK. Comparison of echocardiographic dyssynchrony assessment by tissue velocity and strain imaging in subjects with or without systolic dysfunction and with or without left bundlebranch block. Circulation 2008;117:2617-25.
  12. Kjaergaard J, Hassager C, Oh JK, Kristensen JH, Berning J, Sogaard P. Measurement of cardiac time intervals by Doppler tissue M-mode imaging of the anterior mitral leaflet. J Am Soc Echocardiogr 2005;18:1058-65.
  13. Suffoletto MS, Dohi K, Cannesson M, Saba S, Gorcsan J III. Novel speckle-tracking radial strain from routine black-and-white echocardiographic images to quantify dyssynchrony and predict response to cardiac resynchronization therapy. Circulation 2006;113:960-8.
  14. Sweeney MO, Hellkamp AS, Ellenbogen KA, Greenspon AJ, Freedman RA, Lee KL, Lamas GA Sweeney MO. Adverse effect of ventricular pacing on heart failure and atrial fibrillation among patients with normal baseline QRS duration in a clinical trial of pacemaker therapy for sinus node dysfunction. Circulation 2003;107:2932-7.
  15. Tse HF, Lau CP. Long-term effect of right ventricular pacing on myocardial perfusion and function. J Am Coll Cardiol 1997;29:744-9.
  16. Thambo JB, Bordachar P, Garrigue S, Lafitte S, Sanders P, Reuter S, Girardot R, Crepin D, Reant P, Roudaut R, Jais P, Haissaguerre M, Clementy J, Jimenez M. Detrimental ventricular remodeling in patients with congenital complete heart block and chronic right ventricular apical pacing. Circulation 2004;110:3766-72.
  17. Doshi RN, Daoud EG, Fellows C, Turk K, Duran A, Hamdan MH, Pires LA. Left ventricular-based cardiac stimulation post AV nodal ablation evaluation (the PAVE study). J Cardiovasc Electrophysiol 2005;16:1160-5.
  18. Lieberman R, Padeletti L, Schreuder J, Jackson K, Michelucci A, Colella A, Eastman W, Valsecchi S, Hettrick DA. Ventricular pacing lead location alters systemic hemodynamics and left ventricular function in patients with and without reduced ejection fraction. J Am Coll Cardiol 2006;48:1634-41.
  19. Tse HF, Yu C, Wong KK, Tsang V, Leung YL, Ho WY, Lau CP. Functional abnormalities in patients with permanent right ventricular pacing: the effect of sites of electrical stimulation. J Am Coll Cardiol 2002;40:1451-8.
  20. Pastore G, Noventa F, Piovesana P, Cazzin R, Aggio S, Verlato R, Zanon F, Baracca E, Roncon L, Padeletti L, Barold SS. Left ventricular dyssynchrony resulting from right ventricular apical pacing: relevance of baseline assessment. Pacing Clin Electrophysiol 2008;31:1456-62.
  21. Tops LF, Suffoletto MS, Bleeker GB, Boersma E, van der Wall EE, Gorcsan J 3rd, Schalij MJ, Bax JJ. Speckle-tracking radial strain reveals left ventricular dyssynchrony in patients with permanent right ventricular pacing. J Am Coll Cardiol 2007;50:1180-8.
  22. Wilkoff BL, Cook JR, Epstein AE, Greene HL, Hallstrom AP, Hsia H, Kutalek SP, Sharma A. Dual-chamber pacing or ventricular backup pacing in patients with an implantable defibrillator: the Dual Chamber and VVI Implantable Defibrillator (DAVID) Trial. JAMA 2002;288:3115-23.
  23. Sweeney MO, Bank AJ, Nsah E, Koullick M, Zeng QC, Hettrick D, Sheldon T, Lamas GA. Minimizing ventricular pacing to reduce atrial fibrillation in sinus-node disease. N Engl J Med 2007;357:1000-8.
  24. Albertsen AE, Nielsen JC, Poulsen SH, Mortensen PT, Pedersen AK, Hansen PS, Jensen HK, Egeblad H. DDD(R)-pacing, but not AAI(R)-pacing induces left ventricular desynchronization in patients with sick sinus syndrome: tissue-Doppler and 3D echocardiographic evaluation in a randomized controlled comparison. Europace 2008;10:127-33.
  25. Flevari P, Leftheriotis D, Fountoulaki K, Panou F, Rigopoulos AG, Paraskevaidis I, Kremastinos DT. Long-term nonoutflow septal versus apical right ventricular pacing: relation to left ventricular dyssynchrony. Pacing Clin Electrophysiol 2009;32:354-62.
  26. de Cock CC, Meyer A, Kamp O, Visser CA. Hemodynamic benefits of right ventricular outflow tract pacing: comparison with right ventricular apex pacing. Pacing Clin Electrophysiol 1998;21:536-41.
  27. Giudici MC, Thornburg GA, Buck DL, Coyne EP, Walton MC, Paul DL, Sutton J. Comparison of right ventricular outflow tract and apical lead permanent pacing on cardiac output. Am J Cardiol 1997;79:209-12.
  28. Victor F, Leclercq C, Mabo P, Pavin D, Deviller A, de Place C, Pezard P, Victor J, Daubert C. Optimal right ventricular pacing site in chronically implanted patients: a prospective randomized crossover comparison of apical and outflow tract pacing. J Am Coll Cardiol 1999;33:311-6.
  29. Rosenqvist M, Bergfeldt L, Haga Y, Ryden J, Ryden L, Owall A. The effect of ventricular activation sequence on cardiac performance during pacing. Pacing Clin Electrophysiol 1996;19:1279-86.
  30. Occhetta E, Bortnik M, Magnani A, Francalacci G, Piccinino C, Plebani L, Marino P. Prevention of ventricular desynchronization by permanent para-Hisian pacing after atrioventricular node ablation in chronic atrial fibrillation: a crossover, blinded, randomized study versus apical right ventricular pacing. J Am Coll Cardiol 2006;47:1938-45.
  31. Chung ES, Leon AR, Tavazzi L, Sun JP, Nihoyannopoulos P, Merlino J, Abraham WT, Ghio S, Leclercq C, Bax JJ, Yu CM, Gorcsan J 3rd, St John Sutton M, De Sutter J, Murillo J. Results of the Predictors of Response to CRT (PROSPECT) trial. Circulation 2008;117:2608-16.
  32. Delgado V, Tops LF, Trines SA, Zeppenfeld K, Marsan NA, Bertini M, Holman ER, Schalij MJ, Bax JJ. Acute effects of right ventricular apical pacing on left ventricular synchrony and mechanics. Circ Arrhythm Electrophysiol 2009;2:135-145.

Cited by

  1. Heart failure due to right ventricular apical pacing: the importance of flow patterns vol.18, pp.11, 2011, https://doi.org/10.1093/europace/euw024
  2. Radial left ventricular dyssynchrony by speckle tracking in apical versus non apical right ventricular pacing- evidence of dyssynchrony on medium term follow up vol.8, pp.1, 2011, https://doi.org/10.15171/jcvtr.2016.04
  3. Different lead locations guided by fluoroscopy and ECG parameters and their effect on patients functional status vol.71, pp.1, 2011, https://doi.org/10.1186/s43044-019-0023-1
  4. Ventricular Dyssynchrony based on echocardiographic variables and exercise tolerance After right ventricular pacing: Impact of alternative septal lead locations vol.37, pp.2, 2011, https://doi.org/10.1111/echo.14585